Plant Biol (Stuttg) 2001; 3(4): 311-318
DOI: 10.1055/s-2001-16458
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Deposition of Cytokinesis-Related Callose in Riella helicophylla and Arabidopsis thaliana. Effects of Photolytically Altered Nifedipine[1]

P. Scherp, R. Grotha, U. Kutschera
  • FB 19 Pflanzenphysiologie, Universität Kassel, Kassel, Germany
Further Information

Publication History

March 28, 2001

May 9, 2001

Publication Date:
16 August 2001 (online)

Abstract

The cytokinesis-related callose deposition in cell plates and juvenile cross walls of meristematic cells was investigated in the liverwort Riella helicophylla and seedlings of Arabidopsis thaliana. The β-1,3-glucan callose was detected by its specific staining properties with sirofluor and aniline blue by fluorescence microscopy. The photo-labile calcium antagonist nifedipine (NIF) exerted a specific promotive effect when the substance was exposed to light. The nitroso derivative of photolysed NIF was found to be the active compound which was responsible for the enhancement in callose deposition. The nitroso derivative was isolated after photolysis of NIF by UV light (365 nm) and its structure was verified with 1H-nuclear magnetic resonance and infrared spectroscopy. The characteristic absorption maximum at 770 nm in dimethyl sulfoxide was employed to determine the concentration of the nitrosopyridine in solutions by use of the molar absorption coefficient of the isolated substance. In addition, the nitro derivative of nifedipine was prepared. This nitropyridine was ineffective with respect to the stimulation of callose deposition in dividing cells. The possible mechanism of this cytotoxic effect and its implications for symplastic growth in meristems is discussed.

Abbreviations

NIF: nifedipine

DMSO: dimethyl sulfoxide

TMS: tetramethylsilane

1 Dedicated to Prof. Dr. Luise Stange on the occasion of her 75th birthday.

References

  • 01 Braun,  M., and Richter,  P.. (1999);  Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonema, but not in downward bending by bowing of Chara rhizoids.  Planta. 209 414-423
  • 02 Eschrich,  W.. (1995) Funktionelle Pflanzenanatomie. Berlin, Heidelberg, New York; Springer-Verlag
  • 03 Foissner,  I.. (1990);  Wall appositions induced by ionophore A 23187, CaCl2. LaCl3 and nifedipine in characean cells.  Protoplasma. 154 80-90
  • 04 Grotha,  R.. (1986);  Tetracyclines, verapamil and nifedipine induce callose deposition at specific sites in Riella helicophylla. .  Planta. 169 546-554
  • 05 Kauss,  H.. (1996) Callose synthesis. Membranes: Specialized Functions in Plants. Smallwood, M., Knox, J. P., Bowles, D. J., eds. Oxford; BIOS Scientific Publishers
  • 06 Kutschera,  U.. (2000);  Cell expansion in plant development.  Rev. Brasil. Fisiol. Veg.. 12 65-95
  • 07 Lonergan,  T. A.. (1990);  Steps linking the photosynthetic light reactions to the biological clock require calcium.  Plant Physiol.. 93 110-115
  • 08 Mérillon,  J. M.,, Liu,  D.,, Laurent,  Y.,, Rideau,  M.,, and Viel,  C.. (1992);  Effect of nifedipine on alkaloid accumulation in Catharanthus roseus cell cultures.  Phytochemistry. 31 1609-1612
  • 09 Mineyuki,  Y., and Gunning,  B. E. S.. (1990);  A role for preprophase bands of microtubules in maturation of new cell walls, and a general proposal on the function of preprophase band sites in cell division in higher plants.  J. Cell Sci.. 97 527-537
  • 10 Mišik,  V.,, Mak,  T.,, and Weglicki,  W. B.. (1992);  Formation of superoxide in the reaction of photolytically altered nifedipine - a nitroso compound - with unsaturated membrane lipids.  Chem. Biol. Interactions. 83 97-105
  • 11 Morad,  M.,, Goldmann,  Y. E.,, and Trentham,  D. R.. (1983);  Rapid photochemical inactivation of Ca2+-antagonists shows that Ca2+ entry directly activates contraction in frog heart.  Nature. 304 635-638
  • 12 Otegui,  M., and Staehelin,  L. A.. (2000);  Cytokinesis in flowering plants: more than one way to divide a cell.  Curr. Opin. Plant Biol.. 3 493-502
  • 13 Pfister,  J. R.. (1990);  Rapid, high yield oxidation of Hantzsch-Type 1,4, Dihydropyridines with Ceric Ammonium Nitrate.  Synthesis. 8 689-690
  • 14 Priestly,  J. H.. (1930);  Studies in the physiology of cambial activity. II. The concept of sliding growth.  New Physiol.. 29 96-140
  • 15 Reid,  R. J., and Smith,  F. A.. (1992);  Regulation of calcium influx in Chara. .  Plant Physiol.. 100 637-643
  • 16 Samuels,  A. L.,, Giddings,  T. H., jr.,, and Staehelin,  L. A.. (1995);  Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants.  J. Cell Biol.. 13 1345-1357
  • 17 Scherp,  P.,, Grotha,  R.,, and Kutschera,  U.. (2001);  Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants.  Plant Cell Rep.. 20 143-149
  • 18 Schiefelbein,  J. W.,, Shipley,  A.,, and Rowse,  P.. (1992);  Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. .  Planta. 187 455-459
  • 19 Schlossmann,  K.. (1972);  Fluorometrische Bestimmung des 4-(2-Nitrophenyl)-2,6-dimethyl-1,4-dihydropyridin-3,5-dicarbonsäuredimethylester und seines Hauptmetaboliten.  Arzneim. Forsch. (Drug Res.). 22 60-62
  • 20 Stange,  L.. (1957);  Untersuchungen über Umstimmungs- und Differenzierungsvorgänge in regenerierenden Zellen des Lebermooses Riella. .  Z. Bot.. 45 197-244
  • 21 Stange,  L.. (1984);  Meristem organization and morphogenesis in gemmae of Riella helicophylla (Bory et. Mont.) Mont.  J. Hattori Bot. Lab.. 56 195-200
  • 22 Stange,  L.. (1992);  Self-organized regulation of cell growth in Riella helicophylla (Bory et Mont.) Mont.  Crypt. Bot.. 3 40-44
  • 23 Staško,  A.,, Brezová,  V.,, Biskupič,  S.,, Ondriaš,  K.,, and Mišik,  V.. (1994);  Reactive radical intermediates formed from illuminated nifedipine.  Free Radical Biol. Med.. 17 545-556
  • 24 Vaughn,  K. C.,, Hoffman,  J. C.,, Hahn,  M. G.,, and Staehelin,  L. A.. (1996);  The herbicide dichlobenil disrupts cell plate formation: Immunogold characterization.  Protoplasma. 194 117-132
  • 25 Viell,  B.. (1983);  Der Nährstoffbedarf des Lebermooses Riella helicophylla. .  Biochem. Physiol. Pflanzen. 178 35-45
  • 26 Zuo,  J.,, Niu,  Q. W.,, Nishizawa,  N.,, Wu,  Y.,, Kost,  B.,, and Chua,  N. H.. (2000);  KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis.  Plant Cell. 12 1137-1152

1 Dedicated to Prof. Dr. Luise Stange on the occasion of her 75th birthday.

U. Kutschera

FB 19 Pflanzenphysiologie
Universität Kassel

Heinrich-Plett-Str. 40
34109 Kassel
Germany

Email: kut@hrz.uni-kassel.de

Section Editor: U. Lüttge