Exp Clin Endocrinol Diabetes 2001; 109(5): 273-282
DOI: 10.1055/s-2001-16347
Articles

© Johann Ambrosius Barth

Progressive histopathological changes in pancreatic islets of Zucker Diabetic Fatty rats

S. W. J. Janssen 1, 2 , A. R. M. M. Hermus 2 , W. P. H. Lange 3 , Q. Knijnenburg 1, 2 , J. A. W. M. van der Laak 3 , C. G. J. Sweep 4 , G. J. M. Martens 1 , A. A. J. Verhofstad 3
  • 1 Department of Animal Physiology, Faculty of Science, University of Nijmegen, The Netherlands
  • 2 Department of Endocrinology, University Medical Centre Nijmegen, The Netherlands
  • 3 Department of Pathology, University Medical Centre Nijmegen, The Netherlands
  • 4 Department of Chemical Endocrinology, University Medical Centre Nijmegen, The Netherlands
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Summary:

Thus far, histopathological changes in the pancreatic islets of Zucker Diabetic Fatty (ZDF) rats, an animal model of type 2 diabetes mellitus (or non-insulin-dependent diabetes mellitus), have only been studied in male rats and in 18-weeks old rats or younger. In this study, we have examined in both male and female ZDF rats the histopathological changes longitudinally, from 6 to 32 weeks of age. We studied islet architecture and cellular distribution of the various islet hormones both in ZDF and control rats. In the ZDF rats, aging was initially associated with an enlargement of the islets. From 18 weeks onwards, no further enlargement was noted but islet boundaries became increasingly irregular, leading to the appearance of projections of endocrine cells into the surrounding exocrine tissue. At the islet boundaries as well as within the islets progressive fibrosis was observed with increasing amounts of collagen and reticular fibers. In the islets, staining intensity of both insulin and islet amyloid polypeptide (IAPP) increased slightly till 10 weeks of age and thereafter decreased rapidly. In contrast, the staining intensities of glucagon, somatostatin, and pancreatic polypeptide (PP) did not change. Even at the age of 32 weeks, just the β-cells and not the other endocrine islet cells appear to be affected. In control rats, aging evoked only minor changes. Thus, we observed that during prolonged development of diabetes mellitus in both male and female ZDF rats histopathological changes in the pancreatic islets became progressively more severe, eventually leading to disintegration of the islets.

References

  • 1 Alarcon C, Leahy J L, Schuppin G T, Rhodes C J. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose-infusion rat model of non-insulin-dependent diabetes mellitus.  J Clin Invest. 95 1032-1039 1995; 
  • 2 Clark J B, Palmer C J, Shaw W N. The diabetic Zucker Fatty rat.  Proc Soc Exp Biol Med. 173 68-75 1983; 
  • 3 Deacon C F, Schleser-Mohr S, Ballmann M, Willms B, Conlon J M, Creutzfeldt W. Preferential release of proinsulin relative to insulin in non-insulin-dependent diabetes mellitus.  Acta Endocrinol (Copenh). 119 549-555 1988; 
  • 4 Fehmann H C, Weber V, Göke R, Göke B, Arnold R. Cosecretion of amylin and insulin from isolated rat pancreas.  FEBS Lett. 262 279-281 1990; 
  • 5 Frontoni S, Bong Choi S, Banduch D, Rossetti L. In vivo insulin resistance induced by amylin primarily through inhibition of insulin-stimulated glycogen synthesis in skeletal muscle.  Diabetes. 40 568-573 1991; 
  • 6 Higa M, Zhou Y, Ravazzola M, Baetens D, Orci L, Unger R H. Troglitazone prevents mitochondrial alterations, β cell destruction, and diabetes in obese prediabetic rats.  Proc Natl Acad Sci USA. 96 11513-11518 1999; 
  • 7 Hou X, Ling Z, Quartier E, Foriers A, Schuit F, Pipeleers D, Van Schravendijk C. Prolonged exposure of pancreatic beta cells to raised glucose concentrations results in increased cellular content of islet amyloid polypeptide precursors.  Diabetologia. 42 188-194 1999; 
  • 8 Inoue K, Hiramatsu S, Hisatomi A, Umeda F, Nawata H. Hypersecretion of amylin from the perfused pancreas of genetically obese (fa/fa) rats and ist alteration with aging.  Metabolism. 42 654-658 1993; 
  • 9 Inoue K, Hisatomi A, Umeda F, Nawata H. Relative hypersecretion of amylin to insulin from rat pancreas after neonatal STZ treatment.  Diabetes. 41 723-727 1992; 
  • 10 Janssen S WJ, Martens G JM, Sweep C GJ, Ross H A, Hermus A RMM. In Zucker Diabetic Fatty rats plasma leptin levels are correlated with plasma insulin levels rather than with body weight.  Horm Metab Res. 31 610-615 1999; 
  • 11 Junqueira L CU, Bignolas G, Brentani R R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections.  Histochem J. 11 447-455 1979; 
  • 12 Kahn S E, D'Alessio D A, Schwartz M W, Fujimoto W Y, Ensinck J W, Taborsky G J, Porte D. Evidence of cosecretion of islet amyloid polypeptide and insulin by β-cells.  Diabetes. 39 634-638 1990; 
  • 13 Kogire M, Ishizuka J, Thompson J C, Greeley G H. Inhibitory action of islet amyloid polypeptide and calcitonin gene-related peptide on release of insulin from the isolated rat pancreas.  Pancreas. 6 459-463 1991; 
  • 14 Meester U de, Young I T, Lindeman J, Van der Linden H C. Towards a quantitative grading of bladder tumors.  Cytometry. 12 602-613 1991; 
  • 15 Ohneda M, Inman L R, Unger R H. Caloric restriction in obese pre-diabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence.  Diabetologia. 38 173-179 1995; 
  • 16 Peterson R G, Shaw W N, Neel M A, Little L A, Eichenberg J. Zucker diabetic fatty rat as a model of non-insulin dependent diabetes mellitus.  ILAR News. 32 16-19 1990; 
  • 17 Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky K S. Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male Zucker Diabetic Fatty rat.  Diabetes. 47 358-364 1998; 
  • 18 Pieber T R, Stein D T, Ogawa A, Alam T, Ohneda M, McCorkle K, Chen L, McGarry J D, Unger R H. Amylin-insulin relationships in insulin resistance with and without diabetic hyperglycemia.  Am J Physiol. 265 E446-453 1993; 
  • 19 Polonsky K S, Sturis J, Bell G I. Non-insulin-dependent diabetes mellitus: A genetically programmed failure of the beta cell to compensate for insulin resistance.  N Engl J Med. 334 777-783 1996; 
  • 20 Romeis B. (Ed.) Mikroskopische Technik. 357-358 Oldenbourg, München 1948
  • 21 Silvestre R A, Peiró E, Dégano P, Miralles P, Marco J. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas.  Regul Pept. 31 23-31 1990; 
  • 22 Tokuyama Y, Sturis J, DePaoli A M, Takeda J, Stoffel M, Tang J, Sun X, Polonsky K S, Bell G I. Evolution of β-cell dysfunction in the male Zucker Diabetic Fatty rat.  Diabetes. 44 1447-1457 1995; 
  • 23 Weir G C, Leahy J L. Pathogenesis of non-insulin-dependent (type II) diabetes mellitus. In: Kahn CR, Weir GC (eds) Joslin's Diabetes Mellitus. Lea & Febiger, Philadelphia 240-264 1994
  • 24 Westermark P, Grimelius L. The pancreatic islet cell in insular amyloidosis in human diabetic and non-diabetic islets.  Acta Path Microbiol Scand A. 81 291-300 1973; 
  • 25 Young A A, Mott D M, Stone K, Cooper G JS. Amylin activates glycogen phosphorylase in the isolated soleus muscle of the rat.  FEBS Lett. 281 149-151 1991; 

Dr. A. A. J. Verhofstad

Department of Pathology

University Medical Centre Nijmegen

P.O. Box 9101

6500 HB Nijmegen

The Netherlands

Phone: +31-24-3614289

Fax: +31-24-3540520

Email: A.Verhofstad@pathol.azn.nl

    >