Anästhesiol Intensivmed Notfallmed Schmerzther 2001; 36(5): 268-275
DOI: 10.1055/s-2001-14471
ÜBERSICHT
© Georg Thieme Verlag Stuttgart · New York

Sympathisch vermittelte Kreislaufregulation während Allgemeinanästhesie

Sympathetic Control Mechanisms During General AnesthesiaP. Kienbaum1 , J. Peters2
  • 1Funktionsoberarzt, Abteilung für Anästhesiologie und
    Intensivmedizin, Universitätsklinikum Essen, Essen
  • 2Professor für Anästhesiologie und Intensivtherapie,
    Direktor, Abteilung für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Essen
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Zusammenfassung.

Seit über 100 Jahren untersuchen Wissenschaftler die Funktion des sympathischen Nervensystems, des wichtigsten physiologischen Kreislaufkontrollsystems. Die Muskelsympathikusaktivität in Ruhe und ihre reflektorische Aktivitätszunahme durch Kreislaufstressoren stellt dabei die wesentliche Variable zur Beurteilung von Anästhetika-Effekten beim Menschen dar. Die vorliegende Übersichtsarbeit stellt die Kenntnisse im Hinblick auf das sympathische Nervensystem zusammen und betrachtet die Wirkungen von Injektions- und Inhalationsanästhetika auf den Muskelsympathikus. Die Anästhetika Etomidate und Ketamin sowie eine Inhalationsanästhesie mit niedrig dosiertem Isofluran, Stickoxydul und Opioiden beeinträchtigen sympathische Kreislaufregulationsmechanismen am geringsten und sind damit unter hämodynamischen Gesichtspunkten für die Aufrechterhaltung eines ausreichenden arteriellen Blutdruckes insbesondere bei Patienten mit bereits aktivierten sympathischen Kompensationsmechanismen empfehlenswert.

Sympathetic Control Mechanisms During General Anesthesia.

For more than 100 years scientists have studied the sympathetic nervous system and its cardiovascular control mechanisms. Muscle sympathetic activity is the most important direct and rapidly responding variable for evaluation of sympathetic neural outflow. Therefore, anesthesiologists have been interested in the effects of anesthetics on muscle sympathetic activity at rest and during cardiovascular challenges. This review summarizes effects of positive pressure ventilation, intravenous and inhalational anesthetics as well as nitrous oxide on sympathetic muscle outflow. The least depression of both resting sympathetic outflow and its response to challenges is observed following administration of etomidate, ketamine, or a combination of low dose isoflurane/nitrous oxide and opioids. Thus, these anesthetics can be recommended for anesthesia in patients with already activated sympathetic outflow to maintain arterial blood pressure.

Literatur

  • 1 Langley J N. Das sympathische und verwandte nervöse System der Wirbeltiere (autonomes nervöses System).  Ergebn Physiol. 1903;  27/II 818-872
  • 2 Cannon W B, Newton H F, Bright E M, Menkin V, Moore R M. Some aspects of the physiology of animals surviving complete exclusion of sympathetic nerve impulses.  Am J Physiol. 1929;  89 84-107
  • 3 Euler von US. Identification of the sympathomimetic ergone in adrenergic nerves of cattle (sympathin N) with laevo-noradrenaline.  Acta Physiol Scand. 1948;  6 63-74
  • 4 Goldstein D S, McCarty R, Polinsky R J, Kopin I. Relationship between plasma norepinephrine and sympathetic neural activity.  Hypertension. 1983;  5 552-559
  • 5 Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions.  Physiol Rev. 1990;  70 963-985
  • 6 Jänig W, Brooks C. The autonomic nervous system in health and disease.  J Autonom Nerv Syst. 1983;  7 193-415
  • 7 Esler M D, Jennings G, Korner P, Willett I, Dudley F, Haskin G, Anderson W, Lambert G. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover.  Hypertension. 1988;  11 3-20
  • 8 Hagbarth K-E, Vallbo A B. Pulse and respiratory grouping of sympathetic impulses in human muscle nerves.  Acta Physiol Scand. 1968;  74 96-108
  • 9 Vallbo A B, Hagbarth K E, Torebjörk H E, Wallin B G. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves.  Physiol Rev. 1979;  59 919-957
  • 10 Wallin B G, Elam M. Insights from intraneural recordings of sympathetic nerve traffic in humans.  NIPS. 1994;  9 203-207
  • 11 Brown A M. Cardiac Reflexes. Berne R; (Hrsg.) In: Handbook of physiology. American Physiological Society, Bethesda 1979
  • 12 Dampney R A L. Functional organization of central pathways regulating the cardiovascular system.  Physiol Rev. 1994;  74 323-364
  • 13 Wallin B G, Sundlöf G. A quantitative study of muscle sympathetic nerve activity in resting normotensive and hypertensive subjects.  Hypertension. 1979;  1 67-77
  • 14 Fagius J, Wallin B G, Sundlöf G, Nerhed C, Englesson S. Sympathetic outflow in man after anaesthesia of the glossopharyngeal and vagus nerves.  Brain. 1986;  108 423-438
  • 15 Rudas L, Crossman A A, Morillo C A, Halliwill J R, Tahvanainen K U, Kuusela T A, Eckberg D L. Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine.  Am J Physiol. 1999;  276 H 1691-H 1698
  • 16 Floistrup-Vissing S, Scherrer U, Victor R G. Relation between sympathetic outflow and vascular resistance in the calf during pertubations in central venous pressure. Evidence for cardiopulmonary afferent regulation of calf vascular resistance in humans.  Circ Res. 1989;  65 1710-1717
  • 17 Taylor J A, Halliwill J R, Brown T E, Hayaano J, Eckberg D L. Non-hypotensive hypovolemia reduces ascending aorta dimensions in humans.  J Physiol. 1995;  483 289-298
  • 18 Sundlöf G, Wallin B G. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age.  J Physiol. 1978;  274 621-637
  • 19 Wallin B G, Mörlin C, Hjemdahl P. Muscle sympathetic activity and venous plasma noradrenaline concentrations during static exercise in normotensive and hypertensive subjects.  Acta Physiol Scand. 1987;  129 489-497
  • 20 Leimbach W N, Wallin B G, Victor R G, Aylward P, Sundlöf G, Mark A L. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure.  Circulation. 1986;  73 913-914
  • 21 Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive preceeds generalized sympathetic activation in human heart failure.  Circulation. 1997;  95 169-175
  • 22 Peters J. Pathophysiologie der Beatmung: Effekte auf Kreislauf und Organfunktionen.  Intensivmedizin. 1996;  33 101-112
  • 23 Peters J, Hecker B, Neuser D, Schaden W. Regional blood volume distribution during positive and negative airway pressure breathing in supine humans.  J Appl Physiol. 1993;  75 1740-1747
  • 24 Sellden H, Sjövall H, Wallin B G, Häggendal R, Ricksten S E. Changes in muscle sympathetic nerve activity, venous plasma catecholamines, calf vascular resistance during mechanical ventilation with PEEP in humans.  Anesthesiology. 1989;  70 243-250
  • 25 Stühmeier K D. Blutvolumenverteilung unter lumbaler und segemental-thorakaler Epiduralanästhesie am Menschen: Bedeutung der Blockadeausdehnung und des Atemwegsdruckes für die regionale Gefäßfüllung, speziell des Herzens und des Splanchnikusgebietes sowie deren Beeinflussung durch vasoaktive Pharmaka. Habilitationsschrift, Heinrich-Heine- Universität Düsseldorf 1998
  • 26 Tweed W A, Minuck M, Mymin D. Circulatory responses to ketamine anesthesia.  Anesthesiology. 1972;  37 613-619
  • 27 White P F, Way W L, Trevor A J. Ketamine - It's pharmacology and therapeutic uses.  Anesthesiology. 1982;  56 119-136
  • 28 Takki S, Nikki P, Jäättelä A, Tammisto T. Ketamine and plasma catecholamines.  Br J Anaesth. 1972;  44 1318-1322
  • 29 Ivankovich A D, Miletich D J, Reimann C, Albrecht R F, Zahed B. Cardiovascular effects of centrally administered ketamine in goats.  Anesth Analg. 1974;  53 924-931
  • 30 Kienbaum P, Heuter Th, Michel M C, Peters J. Racemic ketamine decreases muscle sympathetic activity but maintains the neural response to hypotensive challenges in humans.  Anesthesiology. 2000;  92 94-101
  • 31 Lundy P M, Lockwood P A, Thompson G, Frew R. Differential effects of ketamine isomers on neuronal and extraneuronal catecholamine reuptake mechanisms.  Anesthesiology. 1986;  64 359-363
  • 32 Graf B M, Vicenzi M N, Martin E, Bosnjak Z J, Stowe D F. Ketamine has stereospecific effects in the isolated perfused guinea pig heart.  Anesthesiology. 1995;  82 1426-1437
  • 33 Kienbaum P, Heuter Th, Pavlakovic G, Michel M C, Peters J. (S +)-Ketamine increases muscle sympathetic activity and maintains the neural response to hypotensive challenges in humans. Anesthesiology, in press
  • 34 Sellgren J, Ponten J, Wallin B G. Characteristics of muscle nerve sympathetic activity during general anaesthesia in humans.  Acta Anaesth Scand. 1992;  36 336-345
  • 35 Pacentine G G, Muzi M, Ebert T J. Effects of fentanyl on sympathetic activation associated with the administration of desflurane.  Anesthesiology. 1995;  82 823-831
  • 36 Hoehe M, Duka T. Opiates increase plasma catecholamines in humans.  Psychoneuroendocrinology. 1993;  18 141-148
  • 37 Schobel H P, Oren R M, Mark A L, Ferguson D W. Naloxone potentiates cardiopulmonary baroreflex sympathetic control in normal humans.  Circ Res. 1992;  70 172-183
  • 38 Farrel P A, Ebert T J, Kampine J P. Naloxone augments muscle sympathetic nerve activity during isometric exercise in humans.  Am J Physiol. 1991;  260 E 379-E 388
  • 39 Kienbaum P, Thürauf N, Michel M C, Scherbaum N, Gastpar M, Peters J. Profound increase in epinephrine concentration in plasma and cardiovascular stimulation following µ-opioid receptor blockade in opioid-addicted patients during barbiturate-induced anesthesia for acute detoxification.  Anesthesiology. 1998;  88 1154-1161
  • 40 Kienbaum P, Scherbaum N, Thürauf N, Michel M C, Gastpar M, Peters J. Acute detoxification of opioid addicted patients with naloxone during methohexital or propofol anesthesia. A comparison of withdrawal symptoms, neuroendocrine, metabolic, and cardiovascular patterns.  Crit Care Med. 2000;  28 969-976
  • 41 Flickinger H, Fraimow W, Cathcart R. Effect of thiopental induction on cardiac output in man.  Anesth Analg. 1961;  40 694-702
  • 42 White P F. Comparative evaluation of intravenous agents for rapid sequence induction - thiopental, ketamine, midazolam.  Anesthesiology. 1982;  57 279-284
  • 43 Inoue K, Arndt J O. Efferent vagal discharge and heart rate in response to methohexitone, althesin, ketamine and etomidate in cats.  Br J Anaesth. 1982;  54 1105-1116
  • 44 Ebert T, Kanitz D D, Kampine J P. Inhibition of sympathetic neural outflow during thiopental anesthesia in humans.  Anesth Analg. 1990;  71 319-326
  • 45 Shader R, Greenblatt D. The use of benzodiazepines in clinical practice.  Br J Clin Pharmacol. 1981;  11 ((Suppl. 1)) 5 S-9 S
  • 46 Marty J, Gauzit R, Lefevre P, Couderc E, Farinotti R, Henzel C, Desmonts J M. Effects of diazepam and midazolam on baroreflex control of heart rate and on adrenergic activity.  Ann Fr Anesth Reanim. 1987;  6 347-351
  • 47 Gauzit R, Balagny D, Marty J, Couderc E, Farinotti R. Effects of flunitrazepam on the baroreflex control of heart rate and on adrenergic activity.  Ann Fr Anesth Reanim. 1987;  6 347-351
  • 48 Roy-Byrne P P, Lewis N, Villacres E, Greenblatt D J, Shader R I, Veith R C. Suppression of norepinephrine appearance rate in plasma by diazepam in humans.  Life Sci. 1988;  43 1615-1623
  • 49 Ebert T J, Trotier T, Gutersen R V, Uhrich T D. Sympathetic and hemodynamic effects of conscious sedation with midazolam and propofol in humans.  Anesthesiology. 1999;  91 ((Suppl. 3A)) A 36
  • 50 Flacke J W, Davis J, Flacke W E, Bloor B C, Van Etten A P. Effects of fentanyl and diazepam in dogs deprived of autonomic tone.  Anesth Analg. 1985;  64 1053-1059
  • 51 Taneyama C, Goto H, Kohno N, Benson K T, Sasao J, Arakawa K. Effects of fentanyl, diazepam and the combination of both on arterial baroreflex and sympathetic nerve activity in intact and baro-denervated dogs.  Anesth Analg. 1993;  77 44-48
  • 52 Tomicheck R C, Rosow C E, Philbin D M, Moss J, Teplick R S, Schneider R C. Diazepam-fentanyl interaction - hemodynamic and hormonal effects in coronary artery surgery.  Anesth Analg. 1983;  62 881-884
  • 53 Kortly K J, Ebert T J, Vucins E J, Roerig D L, Kampine J P. Baroreceptor reflex control of heart rate during morphine sulfate, diazepam, N2O/O2 anesthesia in humans.  Anesthesiology. 1984;  61 558-563
  • 54 Kortly K J, Ebert T J, Vucins E J, Roerig D L, Stadnicka A, Kampine J P. Effects of fentanyl-diazepam-nitrous oxide anesthesia on arterial baroreflex control of heart rate in man.  Br J Anaesth. 1986;  58 406-414
  • 55 Coates D P, Monk C R, Prys-Roberts C, Turtle M. Hemodynamic effects of infusion of the emulsion formulation of propofol during nitrous oxide anesthesia in humans.  Anesth Analg. 1987;  66 64-70
  • 56 Skues M A, Prys-Roberts C. The pharmacology of propofol.  J Clin Anesth. 1989;  1 387-400
  • 57 Robinson B J, Ebert T J, Brien J O, Colinco M D, Muzi M. Mechanisms wherby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation?.  Anesthesiology. 1997;  86 64-72
  • 58 Rouby J J, Andreev A, Leger P, Arthaud M, Landault C, Vicaut E, Maistre G, Eurin J, Gandjbakch I, Viars P. Peripheral vascular effects of thiopental and propofol in humans with artificial hearts.  Anesthesiology. 1991;  75 32-42
  • 59 Sellgren J, Ponten J, Wallin B G. Percutaneous recording of muscle nerve sympathetic activity during propofol, nitrous oxide, and isoflurane anesthesia in humans.  Anesthesiology. 1990;  73 20-27
  • 60 Ebert T J, Muzi M, Berens R, Goff D, Kampine J. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate.  Anesthesiology. 1992;  76 725-733
  • 61 Sellgren J, Ejnell H, Ealm M, Ponten J, Wallin B G. Sympathetic muscle nerve activity, peripheral blood flows, and baroreceptor reflexes in humans during propofol anesthesia and surgery.  Anesthesiology. 1994;  80 534-544
  • 62 Gooding J, Corssen G. Effect of etomidate on the cardiovascular system.  Anesth Analg. 1977;  56 717-719
  • 63 Ebert T J, Kampine J P. Nitrous oxide augments sympathetic outflow: Direct evidence from human peroneal nerve recordings.  Anesth Analg. 1989;  69 444-449
  • 64 Ebert T J. Differential effects of nitrous oxide on baroreflex control of heart rate and peripheral sympathetic nerve activity.  Anesthesiology. 1990;  72 16-22
  • 65 Park K W, Haering J M, Reiz S, Lowenstein E. Effects of inhalation anesthetics on systemic hemodynamics and the coronary circulation. In: Kaplan JA, Reich DL, Konstadt SN (Hrsg.). Cardiac Anesthesia. 4th Edition. WB Saunders, Philadelphia 1999
  • 66 Ebert T J, Muzi M, Lopatka C W. Neurocirculatory responses to sevoflurane in humans. A comparison to desflurane.  Anesthesiology. 1995;  83 88-95
  • 67 Muzi M, Ebert T J. A comparison of baroreflex sensitivity during isoflurane and desflurane anesthesia in humans.  Anesthesiology. 1995;  82 919-925
  • 68 Segard J L, Hopp F A, Donegan J H, Kalbfleisch J H, Kampine J P. Halothane and the carotid sinus reflex: Evidence for multiple sites of action.  Anesthesiology. 1982;  57 191-202
  • 69 Ebert T J, Muzi M. Sympathetic hyperreactivity during desflurane anesthesia in healthy volunteers: A comparison with isoflurane.  Anesthesiology. 1993;  79 444-453
  • 70 Muzi M, Ebert T J, Hope W G, Robinson B J, Bell L B. Site(s) mediating sympathetic activation with desflurane.  Anesthesiology. 1996;  85 737-747

Dr. med. Peter Kienbaum

Abteilung für Anästhesiologie und Intensivmedizin
Universitätsklinikum Essen

Hufelandstraße 55

45122 Essen

Email: peter.kienbaum@uni-essen.de