Horm Metab Res 2001; 33(1): 19-25
DOI: 10.1055/s-2001-12621
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Adrenomedullin and the Blood-Brain Barrier

A. J. Kastin, V. Akerstrom, L. Hackler, W. Pan
  • VA Medical Center and Tulane University School of Medicine, New Orleans, LA, USA
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Adrenomedullin (ADM) is present both in the periphery and brain. In addition to its peripheral effects, this peptide can exert central effects such as decreasing food ingestion. We used multiple-time regression analysis to determine that labeled ADM can cross from blood to brain with an apparent influx constant (Ki) of 5.83 ± 1.44 × 10 - 4 ml/g-min, much faster than that of albumin, the vascular control. HPLC showed that almost all of the injected 125I-ADM in the brain was intact, and capillary depletion showed that it could reach the parenchyma of the brain. However, more 125l-ADM was reversibly associated with the brain vasculature than we have seen with any other peptide tested by these methods. After intracerebroventricular injection, 125l-ADM exited the brain with the bulk reabsorption of cerebrospinal fluid at an efflux rate comparable to that of albumin. Although there was no blood-to-brain saturation, in situ brain perfusion of 125l-ADM in blood-free physiological buffer showed self-inhibition by excess unlabeled ADM. This, along with evidence of the lack of protein binding shown by capillary zone electrophoresis, indicated competition for the binding site of ADM at the BBB. The low lipophilicity of ADM determined by the octanol/buffer partition coefficient was also consistent with the prominent reversible association of ADM with the vasculature of the BBB. This suggests a function for ADM at the cerebral blood vessels, such as altering cerebral blood flow and perfusion, without disruption of the BBB.

References

  • 1 Kitamura K, Kangawa K, Kawamoto M, lchiki Y, Nakamura S, Matsuo H, Eto T. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma.  Biochem Biophys Res Commun. 1993;  192 553-560
  • 2 Owji A A, Smith D M, Coppock H A, Morgan D G, Bhogal R, Gatei M A, Bloom S R. An abundant and specific binding site for the novel vasodilator adrenomedullin in the rat.  Endocrinology. 1995;  136 2127-2134
  • 3 lchiki Y, Kitamura K, Kangawa K, Kawamoto M, Matsuo H, Eto T. Distribution and characterization of immunoreactive adrenomedullin in human tissue and plasma.  FEBS Lett. 1994;  338 6-10
  • 4 Takahashi K, Satoh F, Sone M, Murakami 0, Sasano H, Mouri T, Shibahara S. Expression of adrenomedullin mRNA in the human brain and pituitary.  Peptides. 1997;  18 1051-1053
  • 5 Wang X, Yue T L, Barone F C, White R F, Clark R K, Willette R N, Sulpizio A C, Aiyar N V, Ruffolo R R Jr, Feuerstein G Z. Discovery of adrenomedullin in rat ischemic cortex and evidence for its role in exacerbating focal brain ischemic damage.  Proc Natl Acad Sci USA. 1995;  92 11 480-11 484
  • 6 Sone M, Takahashi K, Satoh F, Murakami O, Totsune K, Ohneda M, Sasano H, Ito H, Mouri T. Specific adrenomedullin binding sites in the human brain.  Peptides. 1997;  18 1125-1129
  • 7 Taylor G M, Meeran K, O'Shea D, Smith D M, Ghatei M A, Bloom S R. Adrenomedullin inhibits feeding in the rat by a mechanism involving calcitonin gene-related peptide receptors.  Endocrinology. 1996;  137 3260-3264
  • 8 Takahashi H, Watanabe T X, Nishimura M, Nakanishi T, Sakamoto M, Yoshimura M, Komiyama Y, Masuda M, Murakami T. Centrally induced vasopressor and sympathetic responses to a novel endogenous peptide, adrenomedullin, in anesthetized rats.  Am J Hypertens. 1994;  7 478-482
  • 9 Moody T W, Miller M J, Martinez A, Unsworth E, Cuttitta F. Adrenomedullin binds with high affinity, elevates cyclic AMP, and stimulates c-fos mRNA in C6 glioma cells.  Peptides. 1997;  18 1111-1115
  • 10 Takahashi K, Satoh F, Hara E, Sone M, Murakami 0, Kayama T, Yoshimoto T, Shibahara S. Production and secretion of adrenomedullin from glial cell tumors and its effects on cAMP production.  Peptides. 1997;  18 1117-1124
  • 11 Takahashi K, Sone M, Satoh F, Murakami O, Totsune K, Tanji H, Sato N, Ito H, Mouri T. Presence of adrenomedullin-like immunoreactivity in the human cerebrospinal fluid.  Peptides. 1997;  18 459-461
  • 12 Kitamura K, lchiki Y, Tanaka H, Kawamoto M, Emura J, Sakakibara S, Kangawa K, Matsuo H, Eto T. Immunoreactive adrenomedullin in human plasma.  FEBS Lett. 1994;  341 288-290
  • 13 Sato K, Hirata Y, Imai T, Iwashina M, Marumo F. Characterization of immunoreactive adrenomedullin in human plasma and urine.  Life Sci. 1995;  57 189-194
  • 14 Dogan A, Suzuki Y, Koketsu N, Osuka K, Saito K, Takayasu M, Shibuya M, Yoshida J. Intravenous infusion of adrenomedullin and increase in regional cerebral blood flow and prevention of ischemic brain injury after middle cerebral artery occlusion in rats.  J Cereb Blood Flow Metab. 1997;  17 19-25
  • 15 Beattie D T, McNeil D K, Connor H E. The influence of neurokinins and calcitonin gene-related peptide on cerebral blood flow in anaesthetized guinea-pigs.  Neuropeptides. 1993;  24 343-349
  • 16 Banks W A, Kastin A J, Huang W, Jaspan J B, Maness L M. Leptin enters the brain by a saturable system independent of insulin.  Peptides. 1996;  17 305-311
  • 17 Banks W A, Kastin A J. Measurement of transport of cytokines across the blood-brain barrier. In: Conn PM, De Souza EB (eds). Neurobiology of Cytokines, Part A.  San Diego:; Academic Press, Inc. 1993: 67-77
  • 18 Lewis L K, Smith M W, Brennan S O, Yandle T G, Richards A M, Nicholls M G. Degradation of human adrenomedullin (1 - 52) by plasma membrane enzymes and identification of metabolites.  Peptides. 1997;  18 733-739
  • 19 Banks W A, Fasold M B, Kastin A J. Measurement of efflux rates from brain to blood. In: Irvine GB, Williams CH (eds). Methods in Molecular Biology, Neuropeptide Protocols.  Totowa NJ:; Humana Press Inc 1997 73: 353-360
  • 20 Banks W A, Kastin A J. Quantifying carrier-mediated transport of peptides from the brain to the blood. In: Conn PM (ed). Methods in Enzymology.  San Diego:; Academic Press 1989 168: 652-660
  • 21 Banks W A, Kastin A J. Reversible association of the cytokines MIP-1α and MIP-1β with the endothelia of the blood-brain barrier.  Neurosci Lett. 1996;  205 202-206
  • 22 Baskaya M K, Suzuki Y, Anzai M, Seki Y, Saito K, Takayasu M, Shibuya M, Sugita K. Effects of adrenomedullin, calcitonin gene-related peptide, and amylin on cerebral circulation in dogs.  J Cereb Blood Flow Metab. 1995;  15 827-834
  • 23 Banks W A, Kastin A J. Passage of peptides across the blood-brain barrier: pathophysiological perspectives.  Life Sci. 1996;  59 1923-1943
  • 24 Davson H, Segal M B. Physiology of the CSF and Blood-Brain Barriers.  New York:; CRC Press 1995
  • 25 Kastin A J, Akerstrom V, Hackler L, Zadina J E. Phe13, Tyr19-Melanin-concentrating hormone and the blood-brain barrier: role of protein binding.  J Neurochem. 2000;  74 385-391
  • 26 Entzeroth M, Doods H N, Wieland H A, Wiene W. Adrenomedullin mediates vasodilatation via CGRP1 receptors.  Life Sci. 1995;  56 PL19-PL25
  • 27 Hall J M, Siney L, Lippton H, Hyman A, Kang-Chang J, Brain S D. Interaction of human adrenomedullin13 - 52 with calcitonin gene-related peptide receptors in the microvasculature of the rat and hamster.  Br J Pharmacol. 1995;  114 592-597
  • 28 Nuki C, Kawasaki H, Kitamura K, Takenaga M, Kangawa K, Eto T, Wada A. Vasodilator effect of adrenomedullin and calcitonin gene-related peptide receptors in rat mesenteric vascular beds.  Biochem Biophys Res Commun. 1993;  196 245-251
  • 29 Lutz T A, Pieber T R, Walzer B, Del Prete E, Scharrer E. Different influence of CGRP(8 - 37), an amylin and CGRP antagonist, on the anorectic effects of cholecystokinin and bombesin in diabetic and normal rats.  Peptides. 1997;  18 643-649

A. J. Kastin,M.D. 

VA Medical Center and Tulane University School of Medicine

1601 Perdido Street
New Orleans, LA 70112-1262
USA


Phone: Phone:+ 1 (504) 568-0811 ext. 5884

Fax: Fax:+ 1 (504) 522-8559

    >