TumorDiagnostik & Therapie 2000; 21(1): 1-7
DOI: 10.1055/s-2000-8638
ÜBERSICHT/REVIEW
© Georg Thieme Verlag Stuttgart · New York

Die Bedeutung von Tumorsuppressorgenen in der Tumortherapie

The Role of Tumor Suppressor Gene Therapy for Anticancer Treatment. B. M. Pützer
  • Institut für Molekularbiologie (Tumorforschung), IMB, Universitätsklinikum Essen, Germany
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Der Gentransfer normaler Tumorsuppressorgene, die bei einer Vielzahl humaner Tumoren verändert sind, ermöglicht die Behandlung neoplastischer Zellen durch Hemmung von Zellproliferation und Induktion von Apoptose. Arbeiten der letzten Jahre lieferten entscheidende Erkenntnisse zur Funktion von Tumorsuppressorproteinen als negative Regulatoren von Zellproliferation und Tumorentwicklung und ihrer Beteiligung an komplexen biochemischen Signaltransduktionswegen. Tumorzellen weisen sehr häufig eine Schädigung der Gene auf, die direkt an der Regulation des Zellzyklus beteiligt sind. Dabei gehören Mutationen im RB-Signalweg (D-Zykline/CDKs/CDKIs/RB/E2F) zu den häufigsten Veränderungen in menschlichen Tumoren. Neben der Inaktivierung des Tumorsuppressors p53, betreffen die Veränderungen im RB-Weg das Retinoblastom (RB)-Protein und die Cyclin-abhängigen Kinasen (CDKIs) p16INK4a und p21WAF1. Derartige Alterationen sind verantwortlich für die erhöhte Zellteilungskapazität dieser Zellen und ihre Resistenz gegenüber herkömmlichen Therapien wie Radio- und Chemotherapie. Obwohl Tumoren noch weitere Veränderungen aufweisen, die an der Kontrolle der Zellproliferation beteiligt sind, kann der Austausch einer einzelnen spezifischen Alteration durch die Wildtyp-Tumorsuppressorfunktion ausreichen, um den Zelltod durch Apoptose zu induzieren. Es ist allerdings durch die gegenwärtig verfügbaren Methoden des In-vivo-Gentransfers nicht möglich, die normale Genfunktion in jeder Tumorzelle zu ersetzen. Daher sind Mechanismen, bei denen das in der transduzierten Zelle exprimierte Transgen das Wachstum nicht-transduzierter, benachbarter Zellen beeinflußt, sog. Bystander-Effekte, entscheidend für den Erfolg solcher Gentherapieansätze. Dieses Review gibt einen Überblick über die gegenwärtigen präklinischen und klinischen Untersuchungen zum Gentransfer von Tumorsuppressorgenen unter Verwendung adenoviraler Transfersysteme, diskutiert die Grenzen dieser Therapie und zeigt Perspektiven für zukünftige klinische Anwendungen auf.

Gene therapy using wild-type tumor suppressor genes which are frequently mutated in human cancers has the potential to provide cancer treatment based on cell growth retardation and induction of apoptosis in cancer cells. Over the past few years, significant insight has been gained regarding the functions of tumor suppressors and how they participate in the complex biochemical pathways governing the negative regulation of cell growth and tumor development. Tumor cells have typically acquired damage to genes that directly regulate their cell cycle. Mutations within the RB-pathway (D-cyclins/CDKs/CDKIs/RB/E2F) are the most frequent abnormalities identified in human cancers. Beside inactivation of the tumor suppressor protein p53, alterations in the RB-pathway frequently affect the retinoblastoma protein (RB) and the cyclin-dependent kinase inhibitors (CDKIs) p16INK4a and p21WAF1. These alterations are responsible for the enhanced proliferative capacity and resistance of the cells to commonly used therapies such as radio- and chemotherapy. Although all cancers contain multiple abnormalities apart from the RB-pathway controlling various aspects of cellular proliferation, correction of a single specific molecular alteration by reintroduction of wild-type tumor suppressor function, in some cases is sufficient to induce tumor cell death by apoptosis. However, it is beyond the capabilities of currently available methods for in vivo gene transfer to restore normal gene function in every cancer cell. Therefore, mechanisms by which a toxic transgene expressed in transduced cells can alter growth of non-transduced cells, by a so called bystander effect is essentially important for successful gene replacement strategies. This review summarizes current preclinical and clinical efforts on gene replacement approaches with adenoviral gene delivery systems, discusses limitations of therapy and highlights the prospects for future clinical investigations.

References

  • 1 Sherr C J. Cancer Cell cycles.  Science. 1996;  274 1672-1677
  • 2 Sladek T L. E2F transcription factor action, regulation and possible role in human cancer.  Cell Prolif. 1977;  30 97-105
  • 3 Paggi M G, Baldi A, Bonetto F, Giordano A. Retinoblastoma protein family in cell cycle and cancer: a review.  J Cell Biochem. 1996;  62 418-430
  • 4 Hall M P, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and cdk inhibitors in human cancer.  Adv Cancer Res. 1996;  68 67
  • 5 Harper J W, Adami G R, Wei N, Keyomarski K, Elledge S J. The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases.  Cell. 1993;  75 805-816
  • 6 Harlow E. A research shortcut from a common cold virus to human cancer.  Cancer. 1996;  78 558-565
  • 7 Harper J W, Elledge S J, Keyomarski K, Dynlacht B, Tsai L H, Zhang P, Drobrowolski S, Bai C, Connell-Crowley L, Swindell E. Inhibition of cyclin-dependent kinases by p21.  Mol Biol Cell. 1995;  6 387-400
  • 8 Hollstein M, Sidranksy D, Vogelstein B, Harris C C. p53 mutations in human cancers.  Science. 1991;  253 49-53
  • 9 Li Y, Jenkins C W, Nichols M A, Xiong Y. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21.  Oncogene. 1994;  9 2261-2268
  • 10 El-Deiry W S, Tokino T, Velculescu V E, Levy D B, Parsons R, Trent J M, Lin D, Mercer W E, Kinzler K W, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression.  Cell. 1993;  75 817-825
  • 11 Xiong Y, Hannon G J, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases.  Nature. 1993;  366 701-704
  • 12 Yonish-Rouch E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6.  Nature. 1991;  6 345-347
  • 13 Hartwell L H, Kastan M B. Cell cycle control and cancer.  Science. 1994;  266 1821-1828
  • 14 Hinds P W, Weinberg R A. Tumor suppressor genes.  Curr Opin Genet Dev. 1994;  4 135-141
  • 15 Lee J M, Bernstein A. p53 mutations increase resistance to ionizing radiation.  Proc Natl Acad Sci USA. 1993;  90 5742-5746
  • 16 Lowe S W, Schmitt E M, Smith S W, Osborne B A, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes.  Nature. 1993;  362 847-849
  • 17 Hitt M, Addison C L, Graham F L. Human adenovirus vectors for gene transfer into mammalian cells.  Adv Pharmacol. 1997;  40 137-205
  • 18 Bacchetti S, Graham F L. Inhibition of cell proliferation by an adenovirus vector expressing the human wild-type p53 protein.  Int J Oncol. 1993;  3 781-788
  • 19 Liu T J, Zhang W W, Taylor D L, Roth J A, Goepfert H, Clayman G L. Growth suppression of human head and neck cancer bells by introduction of a wild-type p53 gene via a recombinant adenovirus.  Cancer Res. 1994;  54 3662-3667
  • 20 Gomez-Manzano C, Fueyo J, Kyritsis A P, Steck P A, Roth J A, McDonnell T J, Steck K D, Levin V A, Yung W KA. Adenovirus-mediated transfer of p53 gene produces rapid and generalized death of human glioma cells via apoptosis.  Cancer Res. 1996;  56 694-699
  • 21 Cirielli C, Riccioni I T, Yang C, Pili R, Gloe T, Chang J, Inyaku K, Passaniti A, Capogrossi M C. Adenovirus-mediated gene transfer of wild-type p53 results in melanoma cell apoptosis in vitro and in vivo.  Int J Cancer. 1995;  63 673-679
  • 22 Clayman G L, El-Naggar A K, Roth J A, Zhang W W, Goepfert H, Taylor D L, Liu T J. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma.  Cancer Res. 1995;  55 1-6
  • 23 Hamada K, Alemany R, Zhang W W, Hittelman W N, Lotan R, Roth J A, Michell M F. Adenovirus-mediated transfer of a wild-type p53 gene and induction of apoptosis in cervical cancer.  Cancer Res. 1996;  56 3047-3054
  • 24 Spitz F R, Nguyen D, Skibber J M, Cusack J, Roth J A, Cristiano R J. In vivo adenovirus-mediated p53 tumor suppressor gene therapy for colorectal cancer.  Anticancer Res. 1996;  16 3415-3422
  • 25 Hsiao M, Tse V, Carmel J, Tsai Y, Felgner P L, Haas M, Silverberg G D. Intracavitary liposome-mediated p53 gene transfer into glioblastoma with endogenous wild-type p53 in vivo results in tumor suppression and long-term survival.  Biochem Biophys Res Commun. 1997;  233 359-364
  • 26 Asgari K, Sesterhenn I A, McLeod D G, Cowan K, Moul J W, Seth P, Srivastava S. Inhibition of the growth of pre-established subcutaneous tumor nodules of human prostate cancer cells by single injection of the recombinant adenovirus p53 expression vector.  Int J Cancer. 1997;  71 377-382
  • 27 Xu M, Kumar D, Sinivas S, Detolla L J, Yu S F, Stass S A, Mixson A J. Parental gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity.  Hum Gene Ther. 1997;  8 177-185
  • 28 Yang C, Cirielli C, Capogrossi M C, Passaniti A. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells.  Cancer Res. 1995;  55 4210-4213
  • 29 Mujoo K, Maneval K C, Anderson S C, Gutterman J U. Adenoviral-mediated p53 tumor suppressor gene therapy of human ovarian carcinoma.  Oncogene. 1996;  12 1617-1623
  • 30 Fujiwara T, Grimm E A, Mukhopadhyay T, Zhang W, Owen-Schwab L B, Roth J A. Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene.  Cancer Res. 1994;  54 2287-2291
  • 31 Nielsen L L, Gurnani M, Syed J, Dell J, Hartman B, Cartwright M, Johnson R C. Recombinant E1-deleted adenovirus-mediated gene therapy for cancer: efficacy studies with p53 tumor suppressor gene and liver histology in tumor xenograft models.  Hum Gene Ther. 1998;  9 681-694
  • 32 Schuler M, Rochlitz C, Horowitz J A, Schlegel J, Perruchoud A P, Kommoss F, Bolliger C T, Kauczor H U, Dalquen P, Fritz M A, Swanson S, Herrmann R, Huber C. A phase I study of adenovirus-mediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer.  Hum Gene Ther. 1998;  9 2075-2082
  • 33 Roth J A, Swisher S G, Merritt J A, Lawrence D D, Kemp B L, Carrasco C H, El-Naggar A K, Fossella F V, Glisson B S, Hong W K, Khurl F R, Kurie J M, Nesbitt J C, Pisters K, Putnam J B, Schrump D S, Shin D M, Walsh G L. Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement.  Semin Oncol. 1998;  25 33-47
  • 34 Roth J A. Restoration of tumor suppressor gene expression for cancer.  Forum. 1998;  8 368-376
  • 35 Liu T J, El-Naggar A K, McDonnell T J, Steck K D, Wang M, Taylor D L, Clayman G L. Apoptosis induction mediated by wild-type p53 adenoviral gene transfer in squamous cell carcinoma of the head and neck.  Cancer Res. 1995;  55 3117-3122
  • 36 Pützer B M, Bramson J, Addison C L, Hitt M, Siegel P, Muller W J, Graham F L. Combination therapy with Interleukin-2 and wild-type p53 expressed by adenoviral vectors potentiates tumor regression in a murine model of breast cancer.  Hum Gene Ther. 1998;  9 707-718
  • 37 Jung J M, Bruner J M, Ruan S, Langford L A, Kyritsis A P, Kobayashi T, Levin V A, Zhang W. Increased levels of p21WAF1/CIP1 in human brain tumors.  Oncogene. 1995;  11 2021-2028
  • 38 Gomez-Manzano C, Fueyo J, Kyritsis A P, McDonnell T J, Steck P A, Levin V A, Yung W KA. Characterization of p53 and p21 functional interactions in glioma cells en route to apoptosis.  J Nat Cancer Inst. 1997;  14 1036-1044
  • 39 Gomez-Manzano C, Fueyo J, Alameda F, Kyritsis A P, Yung W KA. Gene therapy for gliomas: p53 and E2F-1 proteins and the target of apoptosis.  Int J Mol. Med. 1999;  3 81-85
  • 40 Pirollo K F, Hao Z, Rait A, Jang Y J, Fee Jr W E, Ryan P, Chiang Y, Chang E H. p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy.  Oncogene. 1997;  14 1735-1746
  • 41 Badie B, Goh C S, Klaver J, Herweijer H, Boothman D A. Combined radiation and p53 gene therapy of malignant glioma cells.  Cancer Gene Ther. 1999;  6 155-162
  • 42 Li J H, Lax S A, Kim J, Klamut H, Liu F F. The effects of combining ionizing radiation and adenoviral p53 therapy in nasopharyngeal carcinoma.  Int J Radiat Oncol Biol Phys. 1999;  43 607-616
  • 43 Ogawa N, Fujiwara T, Kagawa S, Nishizaki M, Morimoto Y, Tanida T, Hizuta A, Yasuda T, Roth J A, Tanaka N. Novel combination therapy for human colon cancer with adenovirus-mediated wild-type p53 gene transfer and DNA-damaging chemotherapeutic agent.  Int J Cancer. 1997;  73 367-370
  • 44 Kataoka M, Schumacher G, Cristiano R J, Atkinson E N, Roth J A, Mukhopadhyay T. An agent that increases tumor suppressor transgene product coupled with systemic transgene delivery inhibits growth of metastatic lung cancer in vivo.  Cancer Res. 1998;  58 4761-4765
  • 45 Lang F F, Yung W K, Raju U, Libunao F, Terry N H, Tofilon P J. Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene.  J Neurosurg. 1998;  89 125-132
  • 46 Roth J A, Nguyen D, Lawrence D D, Kemp B L, Carrasco C H, Ferson D Z, Hong W K, Komaki R, Lee J J, Nesbitt J C, Pisters K MW, Putnam J B, Schea R, Shin D M, Walsh G L, Dolormente M M, Han C I, Martin F D, Yen N, Xu K, Stephens L C, McDonnell T J, Mukhopadhyay T, Cai D. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer.  Nat Med. 1996;  2 985-991
  • 47 Pope I M, Poston G J, Kinsella A R. The role of the bystander effect in suicide gene therapy.  Eur J Cancer. 1997;  33 1005-1016
  • 48 Rizk N P, Chang M Y, Kouri C E, Seth P, Kaiser L R, Albelda S M, Amin K M. The evaluation of adenoviral p53-mediated bystander effect in gene therapy of cancer.  Cancer Gene Ther. 1999;  6 291-301
  • 49 Nishizaki M, Fujiwara T, Tanida T, Hizuta A, Nishimori H, Tokino T, Nakamura Y, Bouvet M, Roth J A, Tanaka N. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect.  Clin Cancer Res. 1999;  5 1015-1023
  • 50 Quazilbash M H, Xiao O, Seth P, Kowan K H, Walsh C E. Cancer gene therapy using a novel adeno-associated virus vector expressing human wild-type p53.  Gene Ther. 1997;  4 675-682
  • 51 Serrano M, Gomez-Lahoz E, Depinho R A, Beach D, Bar-Sagi D. Inhibition of rasinduced proliferation and cellular transformation by p16INK4.  Science. 1995;  267 249-252
  • 52 Wolf J K, Kim T E, Fightmaster D, Bodurka D, Gershenson D M, Mills G, Wharton J T. Growth suppression of human ovarian cancer cell lines by the introduction of a p16 gene via a recombinant adenovirus.  Gynecol Oncol. 1999;  73 27-34
  • 53 Lee J H, Lee C T, Yoo C G, Hong Y K, Kim C M, Han S K, Shim Y S, Carbone D P, Kim Y W. The inhibitory effect of adenovirus-mediated p16INK4A gene transfer on the proliferation of lung cancer cell line.  Anticancer Res. 1998;  18 3257-3261
  • 54 Craig C, Kim M, Ohri E, Wersto R, Katayose D, Li Z, Choi Y H, Mudahar B, Srivastava S, Seth P, Cowan K. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells.  Oncogene. 1998;  16 265-272
  • 55 Rocco J W, Li D, Liggett Jr W H, Duan L, Saunders Jr J K, Sidransky D, O'Malley Jr B W. p16INK4A adenovirus-mediated gene therapy for human head and neck squamous cell cancer.  Clin Cancer Res. 1998;  4 1697-1704
  • 56 Grim J, DÁmico A, Frizelle S, Zhou J, Kratzke R A, Curiel D T. Adenovirus-mediated delivery of p16 to p16-deficient human bladder cancer cells confers chemoresistance to cisplatin and paclitaxel.  Clin Cancer Res. 1997;  3 2415-2423
  • 57 Frizelle S P, Grim J, Zhou J, Gupta P, Curiel D T, Geradts J, Kratzke R A. Reexpression of p16INK4A in mesothelioma cells results in cell cycle arrest, cell death tumor suppression and tumor regression.  Oncogene. 1998;  16 3087-3095
  • 58 Fang X, Jin Y, Xu H J, Liu L, Peng H Q, Hogg D, Roth J A, Yu Y, Yu F, Bast Jr R C, Mills G B. Expression of p16 induces transcriptional down-regulation of the RB gene.  Oncogene. 1998;  16 1-8
  • 59 Hsieh J K, Fredersdorf S, Kouzarides T, Martin K, Lu X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction.  Genes Dev. 1997;  11 1840-1852
  • 60 Phillips A C, Stewart S, Ryan K M, Helin K, Vousden K H. Induction of DNA synthesis and apoptosis are separable functions of E2F-1.  Genes Dev. 1997;  11 1853-1863
  • 61 Jin X, Nguyen D, Zhang W W, Kyritsis A P, Roth J A. Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector.  Cancer. 1995;  55 3250-3253
  • 62 Simeone D M, Cascarelli A, Logsdon C D. Adenoviral-mediated gene transfer of a constitutively active retinoblastoma gene inhibits human pancreatic tumor cell proliferation.  Surgery. 1997;  122 428-433
  • 63 Fueyo J, Gomez-Monzano C, Yung W K, Liu T J, Alemany R, Bruner J M, Chintala S K, Rao J S, Levin V A, Kyritsis A P. Suppression of human glioma growth by adenovirus-mediated Rb gene transfer.  Neurology. 1998;  50 1307-1315
  • 64 Riley D J, Nikitin A Y, Lee W H. Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumors in Rb ± mice.  Nat Med. 1996;  2 1316-1321
  • 65 Dugan M C, Sarkar F H. Current concepts in pancreatic cancer: symposium summary.  Pancreas. 1998;  17 325-333
  • 66 Joshi U S, Dergham S T, Chen Y Q, Dugan M C, Crissman J D, Vaitkevicius V K, Sarkar F H. Inhibition of pancreatic tumor cell growth in culture by p21WAF1 recombinant adenovirus.  Pankreas. 1998;  16 107-113
  • 67 Joshi U S, Chen Y Q, Kalemkerian G P, Adil M R, Kraur M, Sarkar F H. Inhibition of tumor cell growth by p21WAF1 adenoviral gene transfer in lung cancer.  Cancer Gene Ther. 1998;  5 183-191
  • 68 Katayose D, Wersto R, Cowan K H, Seth P. Effects of a recombinant adenovirus expressing WAF1/Cip1 on cell growth, cell cycle and apoptosis.  Cell Growth Diff. 1995;  6 1207-1212
  • 69 Eastham J A, Hall S J, Segal I, Wanj J, Timme T L, Yang G, Connell-Crowley L, Elledge S J, Zhang W W, Harper J W, Thompson T C. In vivo gene therapy with p53 and p21 adenovirus for prostate cancer.  Cancer Res. 1995;  55 5151-5155
  • 70 Chen J, Willingham T, Shuford M, Bruce D, Rushing E, Smith Y, Nisen P D. Effects of ectopic overexpression of p21 (WAF1/CIP1) on aneuploidy and the malignant phenotype of human brain tumor cells.  Oncogene. 1996;  13 1395-1403
  • 71 Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53.  Mol Cell. 1999;  3 579-591
  • 72 Wu Y, Levine A J. p53 and E2F-1 cooperate to mediate apoptosis.  Proc Natl Acad Sci USA. 1994;  91 3602-3606

Dr. Brigitte Pützer

Institut für Molekularbiologie (Tumorforschung) Universitätsklinikum

Hufelandstr. 55

45122 Essen

Phone: 0201-723-3158/3153

Fax: 0201-723-5974

Email: brigitte.puetzer@uni-essen.de

    >