TumorDiagnostik & Therapie 2000; 21(2): 51-58
DOI: 10.1055/s-2000-8157
ORIGINALARBEIT/ORIGINAL ARTICLE
Georg Thieme Verlag Stuttgart · New York

Increased Resistance and Selection in Paclitaxel for Peripheral Blood Progenitor Cells Following Transduction with the MDR1 Gene

M. Flasshove1 , J. P. Leonard2 , W. Bardenheuer1 , M. A. S. Moore2
  • 1Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Essen Medical School Essen, Germany
  • 2Sloan-Kettering Institute for Cancer Research, NY, USA
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Paclitaxel-Resistenz und Selektion nach Transfer des MDR1-Gens in periphere Blutvorläuferzellen.

Einleitung: Die Technik des retroviralen Gentransfers erlaubt die Integration und stabile Expression therapeutischer Gene in hämatopoetischen Zellen. Zu den klinischen Anwendungsmöglichkeiten gehören die Markierung von Stammzellentransplantaten aus Knochenmark oder peripherem Blut, die Korrektur monogenetischer Erkrankungen und die Therapie viraler Infektionskrankheiten. Eine für Krebspatienten spezifische therapeutische Option besteht im Transfer von Genen, die transplantierbare hämatopoetische Zellen im Rahmen von Hochdosis-Chemotherapieprotokollen gegenüber Zytostatika resistent machen. Methode: Der Effekt des Transfers der MDR1 cDNA wurde mit Hilfe retroviraler Vektoren in prästimulierte CD34-angereicherte primäre hämatopoetische Zellen des peripheren Blutes untersucht. Ergebnisse: Mit Hilfe der PCR, die spezifisch für provirale Sequenzen im Genom der Zielzelle war, wurde eine Transfereffizienz von 70 % in klonogene Vorläuferzellen nachgewiesen. Die Effizienz für unreifere hämatopoetische Subpopulationen war jedoch deutlich niedriger. Beim Vergleich MDR1-transduzierter Zellen mit negativen Kontrollzellen waren zusätzlich 14,8 ± 2,6 % klonogene Vorläuferzellen resistent gegenüber Paclitaxel. MDR1-transduzierte Zellen und Kontrollzellen wurden in vitro in Paclitaxel selektioniert und dann weiter expandiert. Die Anzahl der kernhaltigen Zellen und der klonogenen Vorläuferzellen wurden miteinander verglichen und zeigten einen zweifachen Selektionsvorteil für klonogene Vorläuferzellen, die von der MDR1-transduzierten Zellpopulation abstammten. Die Proliferationskapazität war für MDR1-transduzierte Zellen und Kontrollzellen gleich. Schlußfolgerung: Eine vermehrte Resistenz gegenüber Paclitaxel sowie einen Selektionsvorteil für in vitro expandierte hämatopoetische Vorläuferzellen nach MDR1-Gentransfer wurde beobachtet. Diese Resultate können bei der Entwicklung zukünftiger Gentherapie-Protokolle Verwendung finden.

Introduction: The technique of retrovirally mediated gene transfer allows the introduction and stable expression of therapeutic genes in hematopoietic cells. Clinical applications include the marking of bone marrow and peripheral blood stem cell transplants, the correction of monogenetic disorders, and the inhibition of viral infections. A specific therapeutic option for the treatment of cancer patients consists in the transfer of drug resistance genes rendering transplantable hematopoietic cells resistant to the cytotoxic drugs used in high-dose chemotherapy protocols. Methods: We have investigated the effects of MDR1 gene transfer via a retroviral vector into prestimulated CD34-enriched primary hematopoietic cells from human peripheral blood. Results: Using a PCR to detect proviral sequences within the DNA of the target cells we observed a transfer efficiency of 70 % into clonogenic progenitor cells with a markedly decreasing efficiency into more immature subpopulations. Clonogenic progenitors could be rendered resistant to paclitaxel at a frequency of 14.8 ± 2.6 % when comparing MDR1 transduced cells to a mock control. Retrovirally transduced cells and mock control cells were selected in vitro for seven days in paclitaxel and then further expanded. The numbers of nucleated cells and progenitor cells were compared and revealed a twofold selective advantage for progenitors derived from MDR1-transduced cells. The proliferative capacity did not differ between MDR1-transduced and mock cells. Conclusion: Increased paclitaxel resistance and a selective advantage for in vitro-expanded hematopoietic progenitors were detectal. This observation may be helpful for the design of future gene therapy trials.

References

  • 1 Dick J E, Magli M C, Huszar D, Phillips R A, Bernstein A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hematopoietic system of W/Wv mice.  Cell. 1985;  42 71-79
  • 2 Hock R A, Miller A D. Retrovirus-mediated gene transfer and expression of drug resistance genes in human haematopoietic progenitor cells.  Nature. 1986;  320 275-277
  • 3 Joyner A, Keller G, Phillips R A, Bernstein A. Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells.  Nature. 1983;  305 556-558
  • 4 Blaese R M, Culver K W, Miller A D, Carter C S, Fleisher T, Clerici M, Shearer G, Chang L, Tolstoshev P, Greenblatt J J, Rosenberg S A, Klein H, Berger M, Mullen C A, Ramsey W J, Muul L, Morgan R A, Anderson W F. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years.  Science. 1995;  270 475-480
  • 5 Bordignon C, Notarangelo L D, Nobili N, Ferrari G, Casorati G, Panina P, Mazzolari E, Maggioni D, Rossi C, Servida P, Ugazio A G, Mavilio F. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients.  Science. 1995;  270 470-475
  • 6 Brenner M K, Rill D R, Holladay M S, Heslop H E, Moen R C, Buschle M, Krance R A, Santana V M, Anderson W F, Ihle J N. Gene marking to determine whether autologous marrow infusion restores long-term hematopoiesis in cancer patients.  Lancet. 1993;  342 1134-1137
  • 7 Kohn D B, Bauer G, Rice C R, Rothschild J C, Carbonaro D A, Valdez P, Hao Q, Zhou C, Bahner I, Kearns K, Brody K, Fox S, Haden E, Wilson K, Salata C, Dolan C, Wetter C, Aguilar-Cordova E, Church J. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children.  Blood. 1999;  94 368-371
  • 8 Sorrentino B P, Brandt S J, Bodine D, Gottesman M, Pastan I, Cline A, Nienhuis A W. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1.  Science. 1992;  257 99-103
  • 9 Ward M, Richardson C, Pioli P, Smith L, Podda S, Goff S, Hesdorffer C, Bank A. Transfer and expression of the human multiple drug resistance gene in human CD34+ cells.  Blood. 1994;  84 1408-1414
  • 10 Li M, Banerjee D, Zhao S C, Schweitzer B I, Mineishi S, Gilboa E, Bertino J R. Development of a retroviral construct containing a human mutated dihydrofolate reductase cDNA for hematopoietic stem cell transduction.  Blood. 1994;  83 3403-3408
  • 11 Flasshove M, Banerjee D, Mineishi S, Li M X, Bertino J R, Moore M AS. Ex vivo expansion and selection of human CD34-positive peripheral blood progenitor cells after introduction of a mutated dihydrofolate reductase cDNA via retroviral gene transfer.  Blood. 1995;  85 566-574
  • 12 Moritz T, Mackay W, Glassner B J, Williams D A, Samson L. Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo.  Cancer Res. 1995;  55 2608-2614
  • 13 Momparler R L, Eliopoulos N, Bovenzi V, Letourneau S, Greenbaum M, Cournoyer D. Resistance to cytosine arabinoside by retrovirally mediated gene transfer of human cytidine deaminase into murine fibroblast and hematopoietic cells.  Cancer Gene Ther. 1996;  3 331-338
  • 14 Flasshove M, Frings W, Schröder J K, Moritz T, Schütte J, Seeber S. Transfer of the cytidine deaminase cDNA into hematopoietic cells.  Leuk Res. 1999;  23 1047-1053
  • 15 Hildinger M, Fehse B, Hegewisch-Becker S, John J, Rafferty J R, Ostertag W, Baum C. Dominant selection of hematopoietic progenitor cells with retroviral MDR1 co-expression vectors.  Hum Gene Ther. 1998;  9 33-42
  • 16 Hesdorffer C, Ayello J, Ward M, Kaubisch A, Vahdat L, Balmaceda C, Garrett T, Fetell M, Reiss R, Bank A, Antman K. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem cell transplantation.  J Clin Oncol. 1998;  16 165-172
  • 17 Devereux S, Corney C, Macdonald C, Watts M, Sullivan A, Goldstone A H, Ward M, Bank A, Linch D C. Feasibility of multidrug resistance (MDR-1) gene transfer in patients undergoing high-dose therapy and peripheral blood stem cell transplantation for lymphoma.  Gene Ther. 1998;  5 403-408
  • 18 Hanania E G, Fu S, Zu Z, Hegewisch-Becker S, Körbling M, Hester J, Durett A, Andreef M, Mechetner E, Holzmayer T. et al . Chemotherapy resistance to taxol in clonogenic progenitor cells following transduction of CD34 selected marrow and peripheral blood cells with a retrovirus that contains the MDR-1 chemotherapy resistance gene.  Gene Ther. 1995;  2 285-294
  • 19 Eckert H G, Stockschlader M, Just U, Hegewisch-Becker S, Grez M, Uhde A, Zander A, Ostertag W, Baum C. High-dose multidrug resistance in primary human hematopoietic progenitor cells transduced with optimized retroviral vectors.  Blood. 1996;  88 3407-3415
  • 20 Bodine D M, Seidel N E, Gale M S, Nienhuis A W, Orlic D. Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colony-stimulating factor and stem cell factor.  Blood. 1994;  84 1482-1491
  • 21 Bertolini F, DeMonte L, Corsini C, Lazzari L, Lauri L, Soligo D, Ward M, Bank A, Malavasi F. Retrovirus-mediated transfer of the multidrug resistance gene into human haemopoietic progenitor cells.  Br J Haematol. 1994;  88 318-324
  • 22 Podda S, Ward M, Himelstein A, Richardson C, DeLaFlor-Weiss E, Smith L, Gottesman M, Pastan I, Bank A. Transfer and expression of the human multiple drug resistance gene into live mice.  Proc Natl Acad Sci USA. 1992;  89 9676-9680
  • 23 Goldstein N I, Moore M AS, Allen C, Tackney C. A human fetal spleen cell line, immortalized with SV40 T-antigen, will support the growth of CD34+ long-term culture-initiating cells.  Mol Cell Diff. 1993;  1 301-321
  • 24 Moore M AS, Hoskins I. Ex vivo expansion of cord blood-derived stem cells and progenitors.  Blood Cells. 1994;  20 468-481
  • 25 Higuchi R. Rapid, efficient DNA extraction for PCR from cells or blood.  Amplifications. 1989;  2 1
  • 26 Flasshove M, Banerjee D, Leonard J P, Mineishi S, Li M X, Bertino J R, Moore M AS. Retroviral transduction of human CD34+ umbilical cord blood progenitor cells with a mutated dihydrofolate reductase cDNA.  Hum Gene Ther. 1998;  9 63-71
  • 27 Hanenberg H, Hashino K, Konishi H, Hock R A, Kato I, Williams D A. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells.  Hum Gene Ther. 1997;  8 2193-2206
  • 28 Baum C, Hegewisch-Becker S, Eckert H G, Stocking C, Ostertag W. Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells.  J Virol. 1995;  69 7541-7547
  • 29 Cowan K H, Moscow J A, Huang H, Zujewski J A, O'Shaughnessy J, Sorrentino B, Hines K, Carter C, Schneider E, Cusack G, Noone M, Dunbar C, Steinberg S, Wilson W, Goldspiel B, Read E J, Leitman S F, McDonagh K, Chow C, Abati A, Chiang Y, Chang Y N, Gottesman M M, Pastan I, Nienhuis A. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients.  Clin Cancer Res. 1999;  5 1619-1628
  • 30 Allay J A, Persons D A, Galipeau J, Riberdy J M, Ashmun R A, Blakley R L, Sorrentino B P. In vivo selection of retrovirally transduced hematopoietic stem cells.  Nat Med. 1998;  4 1136-1143
  • 31 Williams D A, Hsieh K, DeSilva A, Mulligan R C. Protection of bone marrow transplant recipients from lethal doses of methotrexate by the generation of methotrexate-resistant bone marrow.  J Exp Med. 1987;  166 210-218
  • 32 Moscow J A, Huang H, Carter C, Hines K, Zujewski J, Cusack G, Chow C, Venzon D, Sorrentino B, Chiang Y, Goldspiel B, Leitman S, Read E J, Abati A, Gottesman M M, Pastan I, Sellers S, Dunbar C, Cowan K H. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy.  Blood. 1999;  94 52-61
  • 33 Sorrentino B P, McDonagh K T, Woods D, Orlic D. Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice.  Blood. 1995;  86 491-501
  • 34 Licht T, Aran J M, Goldenberg S K, Vieira W D, Gottesman M M, Pastan I. Retroviral transfer of human MDR1 gene to hematopoietic cells: effects of drug selection and of transcript splicing on expression of encoded P- glycoprotein.  Hum Gene Ther. 1999;  10 2173-2185
  • 35 Moore M AS, Shapiro F. Regulation and function of hematopoietic stem cells.  Curr Opin Hematol. 1994;  1 180-186
  • 36 Bertolini F, Battagli M, Lanza A, Palermo B, Soligo D, Robustelli della Cuna G. Transwell stroma culture in the presence of FLT-Iigand and thrombopoietin allows ex vivo expansion and gene transfer in NOD/SCID mice repopulating CD34+CD38--cells.  Blood. 1997;  90 365a
  • 37 Moritz T, Patel V P, Williams D A. Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors.  J Clin Invest. 1994;  93 1451-1457
  • 38 Miyoshi H, Smith K A, Mosier D E, Verma I M, Torbett B E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors.  Science. 1999;  283 682-686
  • 39 Bunting K D, Galipeau J, Topham D, Benaim E, Sorrentino B P. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice.  Blood. 1998;  92 2269-2279

Dr. Michael Flasshove

Department of Internal Medicine (Cancer Research) West German Cancer, Center, University of Essen Medical School

Hufelandstrasse 55

45122 Essen

Germany

Phone: +49-201-723-2706

Fax: +49-201-723-2178

Email: michael.flasshove@uni-essen.de

    >