Subscribe to RSS
DOI: 10.1055/s-0044-1791739
Is There a Role for Bronchoscopy in Aspiration Pneumonia?
Abstract
Aspiration represents the passage of oropharyngeal content to the lower respiratory tract. The interplay between the host and the aspirate proprieties determines the subsequent aspiration syndrome. A low pH, typical of gastric aspirate, favors chemical pneumonitis, whereas an increased bacterial inoculum causes aspiration pneumonia. About a quarter of patients with aspiration pneumonitis will develop a bacterial superinfection during the course of recovery. While antibiotic therapy is indicated for aspiration pneumonia, supportive care remains the cornerstone of treatment in aspiration pneumonitis. However, the overlapping clinical features of these syndromes lead to initiation of antimicrobial therapy in most cases of aspiration. Bronchoscopy can aid in clinical decision-making by direct airway visualization and also by providing access to a series of emerging biomarkers. Invasive microbiological studies increase diagnostic yield and enable a tailored antibiotic treatment. In conjunction with stewardship programs, invasive sampling and novel molecular diagnostics can decrease the amount of inappropriate antibiotic therapy. In the context of foreign body aspiration, bronchoscopy represents both diagnostic and treatment gold standard.
Publication History
Article published online:
24 October 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 2013; 7 (03) 245-257
- 2 Dickson RP, Erb-Downward JR, Huffnagle GB. Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol 2015; 309 (10) L1047-L1055
- 3 Mandell LA, Niederman MS. Aspiration pneumonia. N Engl J Med 2019; 380 (07) 651-663
- 4 Mendelson CL. The aspiration of stomach contents into the lungs during obstetric anesthesia. Am J Obstet Gynecol 1946; 52: 191-205
- 5 Panchabhai TS, Mehta AC. Historical perspectives of bronchoscopy. Connecting the dots. Ann Am Thorac Soc 2015; 12 (05) 631-641
- 6 Bartlett JG, Gorbach SL. The triple threat of aspiration pneumonia. Chest 1975; 68 (04) 560-566
- 7 Mantor PC, Tuggle DW, Tunell WP. An appropriate negative bronchoscopy rate in suspected foreign body aspiration. Am J Surg 1989; 158 (06) 622-624
- 8 Baharloo F, Veyckemans F, Francis C, Biettlot MP, Rodenstein DO. Tracheobronchial foreign bodies: presentation and management in children and adults. Chest 1999; 115 (05) 1357-1362
- 9 Dikensoy O, Usalan C, Filiz A. Foreign body aspiration: clinical utility of flexible bronchoscopy. Postgrad Med J 2002; 78 (921) 399-403
- 10 Lin L, Lv L, Wang Y, Zha X, Tang F, Liu X. The clinical features of foreign body aspiration into the lower airway in geriatric patients. Clin Interv Aging 2014; 9: 1613-1618
- 11 Casalini AG, Majori M, Anghinolfi M. et al. Foreign body aspiration in adults and in children: advantages and consequences of a dedicated protocol in our 30-year experience. J Bronchology Interv Pulmonol 2013; 20 (04) 313-321
- 12 Eren S, Balci AE, Dikici B, Doblan M, Eren MN. Foreign body aspiration in children: experience of 1160 cases. Ann Trop Paediatr 2003; 23 (01) 31-37
- 13 Blazer S, Naveh Y, Friedman A. Foreign body in the airway. A review of 200 cases. Am J Dis Child 1980; 134 (01) 68-71
- 14 Mu L, He P, Sun D. The causes and complications of late diagnosis of foreign body aspiration in children. Report of 210 cases. Arch Otolaryngol Head Neck Surg 1991; 117 (08) 876-879
- 15 Sehgal IS, Dhooria S, Ram B. et al. Foreign body inhalation in the adult population: experience of 25,998 bronchoscopies and systematic review of the literature. Respir Care 2015; 60 (10) 1438-1448
- 16 Emir H, Tekant G, Beşik C. et al. Bronchoscopic removal of tracheobroncheal foreign bodies: value of patient history and timing. Pediatr Surg Int 2001; 17 (2–3): 85-87
- 17 van der Maarel-Wierink CD, Vanobbergen JN, Bronkhorst EM, Schols JM, de Baat C. Meta-analysis of dysphagia and aspiration pneumonia in frail elders. J Dent Res 2011; 90 (12) 1398-1404
- 18 Taylor JK, Fleming GB, Singanayagam A, Hill AT, Chalmers JD. Risk factors for aspiration in community-acquired pneumonia: analysis of a hospitalized UK cohort. Am J Med 2013; 126 (11) 995-1001
- 19 James CF, Modell JH, Gibbs CP, Kuck EJ, Ruiz BC. Pulmonary aspiration–effects of volume and pH in the rat. Anesth Analg 1984; 63 (07) 665-668
- 20 Marik PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 2001; 344 (09) 665-671
- 21 Pan D, Chung S, Nielsen E, Niederman MS. Aspiration pneumonia. Semin Respir Crit Care Med 2024; 45 (02) 237-245
- 22 DiBardino DM, Wunderink RG. Aspiration pneumonia: a review of modern trends. J Crit Care 2015; 30 (01) 40-48
- 23 Raghavendran K, Nemzek J, Napolitano LM, Knight PR. Aspiration-induced lung injury. Crit Care Med 2011; 39 (04) 818-826
- 24 Marin-Corral J, Pascual-Guardia S, Amati F. et al; GLIMP Investigators. Aspiration risk factors, microbiology, and empiric antibiotics for patients hospitalized with community-acquired pneumonia. Chest 2021; 159 (01) 58-72
- 25 Reza Shariatzadeh M, Huang JQ, Marrie TJ. Differences in the features of aspiration pneumonia according to site of acquisition: community or continuing care facility. J Am Geriatr Soc 2006; 54 (02) 296-302
- 26 Garvey BM, McCambley JA, Tuxen DV. Effects of gastric alkalization on bacterial colonization in critically ill patients. Crit Care Med 1989; 17 (03) 211-216
- 27 Terpenning MS, Taylor GW, Lopatin DE, Kerr CK, Dominguez BL, Loesche WJ. Aspiration pneumonia: dental and oral risk factors in an older veteran population. J Am Geriatr Soc 2001; 49 (05) 557-563
- 28 Bartlett JG, Gorbach SL, Finegold SM. The bacteriology of aspiration pneumonia. Am J Med 1974; 56 (02) 202-207
- 29 Doyle RL, Szaflarski N, Modin GW, Wiener-Kronish JP, Matthay MA. Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med 1995; 152 (6 Pt 1): 1818-1824
- 30 Torres A, Cilloniz C, Niederman MS. et al. Pneumonia. Nat Rev Dis Primers 2021; 7 (01) 25
- 31 Komiya K, Rubin BK, Kadota JI. et al. Prognostic implications of aspiration pneumonia in patients with community acquired pneumonia: a systematic review with meta-analysis. Sci Rep 2016; 6: 38097
- 32 Lorber B, Swenson RM. Bacteriology of aspiration pneumonia. A prospective study of community- and hospital-acquired cases. Ann Intern Med 1974; 81 (03) 329-331
- 33 Cesar L, Gonzalez C, Calia FM. Bacteriologic flora of aspiration-induced pulmonary infections. Arch Intern Med 1975; 135 (05) 711-714
- 34 Mier L, Dreyfuss D, Darchy B. et al. Is penicillin G an adequate initial treatment for aspiration pneumonia? A prospective evaluation using a protected specimen brush and quantitative cultures. Intensive Care Med 1993; 19 (05) 279-284
- 35 Marik PE, Careau P. The role of anaerobes in patients with ventilator-associated pneumonia and aspiration pneumonia: a prospective study. Chest 1999; 115 (01) 178-183
- 36 Torres A, Niederman MS, Chastre J. et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J 2017; 50 (03) 1700582
- 37 Metlay JP, Waterer GW, Long AC. et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (07) e45-e67
- 38 Martin-Loeches I, Torres A, Nagavci B. et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Intensive Care Med 2023; 49 (06) 615-632
- 39 Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects. Chest 1997; 111 (05) 1266-1272
- 40 Metheny NA, Clouse RE, Chang YH, Stewart BJ, Oliver DA, Kollef MH. Tracheobronchial aspiration of gastric contents in critically ill tube-fed patients: frequency, outcomes, and risk factors. Crit Care Med 2006; 34 (04) 1007-1015
- 41 Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet 2015; 386 (9998) 1097-1108
- 42 Hu X, Lee JS, Pianosi PT, Ryu JH. Aspiration-related pulmonary syndromes. Chest 2015; 147 (03) 815-823
- 43 Lascarrou JB, Lissonde F, Le Thuaut A. et al. Antibiotic therapy in comatose mechanically ventilated patients following aspiration: differentiating pneumonia from pneumonitis. Crit Care Med 2017; 45 (08) 1268-1275
- 44 Almirall J, Boixeda R, de la Torre MC, Torres A. Aspiration pneumonia: a renewed perspective and practical approach. Respir Med 2021; 185: 106485
- 45 Stolz D, Kurer G, Meyer A. et al. Propofol versus combined sedation in flexible bronchoscopy: a randomised non-inferiority trial. Eur Respir J 2009; 34 (05) 1024-1030
- 46 Darie AM, Schumann DM, Laures M. et al. Oxygen desaturation during flexible bronchoscopy with propofol sedation is associated with sleep apnea: the PROSA-Study. Respir Res 2020; 21 (01) 306
- 47 Stolz D, Papakonstantinou E, Pascarella M. et al. Airway smooth muscle area to predict steroid responsiveness in COPD patients receiving triple therapy (HISTORIC): a randomised, placebo-controlled, double-blind, investigator-initiated trial. Eur Respir J 2023; 62 (01) 2300218
- 48 Grendelmeier P, Tamm M, Pflimlin E, Stolz D. Propofol sedation for flexible bronchoscopy: a randomised, noninferiority trial. Eur Respir J 2014; 43 (02) 591-601
- 49 Du Rand IA, Blaikley J, Booton R. et al; British Thoracic Society Bronchoscopy Guideline Group. British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: accredited by NICE. Thorax 2013; 68 (Suppl. 01) i1-i44
- 50 Ramirez JA, Musher DM, Evans SE. et al. Treatment of community-acquired pneumonia in immunocompromised adults: a consensus statement regarding initial strategies. Chest 2020; 158 (05) 1896-1911
- 51 Marom EM, McAdams HP, Sporn TA, Goodman PC. Lentil aspiration pneumonia: radiographic and CT findings. J Comput Assist Tomogr 1998; 22 (04) 598-600
- 52 Shimada M, Teramoto S, Matsui H. et al. Nine pulmonary aspiration syndrome cases of atypical clinical presentation, in which the final diagnosis was obtained by histological examinations. Respir Investig 2014; 52 (01) 14-20
- 53 Mukhopadhyay S, Katzenstein A-LA. Pulmonary disease due to aspiration of food and other particulate matter: a clinicopathologic study of 59 cases diagnosed on biopsy or resection specimens. Am J Surg Pathol 2007; 31 (05) 752-759
- 54 Wolfe JE, Bone RC, Ruth WE. Diagnosis of gastric aspiration by fiberoptic bronchoscopy. Chest 1976; 70 (04) 458-459
- 55 Campinos L, Duval G, Couturier M, Brage D, Pham J, Gaudy JH. The value of early fibreoptic bronchoscopy after aspiration of gastric contents. Br J Anaesth 1983; 55 (11) 1103-1105
- 56 Badellino MM, Buckman Jr RF, Malaspina PJ, Eynon CA, O'Brien GM, Kueppers F. Detection of pulmonary aspiration of gastric contents in an animal model by assay of peptic activity in bronchoalveolar fluid. Crit Care Med 1996; 24 (11) 1881-1885
- 57 Farrell S, McMaster C, Gibson D, Shields MD, McCallion WA. Pepsin in bronchoalveolar lavage fluid: a specific and sensitive method of diagnosing gastro-oesophageal reflux-related pulmonary aspiration. J Pediatr Surg 2006; 41 (02) 289-293
- 58 Farhath S, Aghai ZH, Nakhla T. et al. Pepsin, a reliable marker of gastric aspiration, is frequently detected in tracheal aspirates from premature ventilated neonates: relationship with feeding and methylxanthine therapy. J Pediatr Gastroenterol Nutr 2006; 43 (03) 336-341
- 59 Farhath S, He Z, Nakhla T. et al. Pepsin, a marker of gastric contents, is increased in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Pediatrics 2008; 121 (02) e253-e259
- 60 Suzuki T, Saitou M, Utano Y, Utano K, Niitsuma K. Bronchoalveolar lavage (BAL) amylase and pepsin levels as potential biomarkers of aspiration pneumonia. Pulmonology 2023; 29 (05) 392-398
- 61 Weiss CH, Moazed F, DiBardino D, Swaroop M, Wunderink RG. Bronchoalveolar lavage amylase is associated with risk factors for aspiration and predicts bacterial pneumonia. Crit Care Med 2013; 41 (03) 765-773
- 62 Samanta S, Poddar B, Azim A, Singh RK, Gurjar M, Baronia AK. Significance of mini bronchoalveolar lavage fluid amylase level in ventilator-associated pneumonia: a prospective observational study. Crit Care Med 2018; 46 (01) 71-78
- 63 Abu-Hasan M, Elmallah M, Neal D, Brookes J. Salivary amylase level in bronchoalveolar fluid as a marker of chronic pulmonary aspiration in children. Pediatr Allergy Immunol Pulmonol 2014; 27 (03) 115-119
- 64 Sole ML, Conrad J, Bennett M. et al. Pepsin and amylase in oral and tracheal secretions: a pilot study. Am J Crit Care 2014; 23 (04) 334-338
- 65 Hsieh MH, Chen PC, Hsu HY. et al. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol Immunol 2023; 20 (01) 38-50
- 66 Corwin RW, Irwin RS. The lipid-laden alveolar macrophage as a marker of aspiration in parenchymal lung disease. Am Rev Respir Dis 1985; 132 (03) 576-581
- 67 Sacco O, Fregonese B, Silvestri M, Sabatini F, Mattioli G, Rossi GA. Bronchoalveolar lavage and esophageal pH monitoring data in children with “difficult to treat” respiratory symptoms. Pediatr Pulmonol 2000; 30 (04) 313-319
- 68 Nussbaum E, Maggi JC, Mathis R, Galant SP. Association of lipid-laden alveolar macrophages and gastroesophageal reflux in children. J Pediatr 1987; 110 (02) 190-194
- 69 Ahrens P, Noll C, Kitz R, Willigens P, Zielen S, Hofmann D. Lipid-laden alveolar macrophages (LLAM): a useful marker of silent aspiration in children. Pediatr Pulmonol 1999; 28 (02) 83-88
- 70 Pinto LA, Dias AC, Machado DC, Jones MH, Stein RT, Pitrez PM. Diagnosis of pulmonary aspiration: a mouse model using a starch granule test in bronchoalveolar lavage. Respirology 2008; 13 (04) 594-598
- 71 Reilly BK, Katz ES, Misono AS. et al. Utilization of lipid-laden macrophage index in evaluation of aerodigestive disorders. Laryngoscope 2011; 121 (05) 1055-1059
- 72 Lawlor CM, Choi SS. Lipid-laden macrophage index as a diagnostic tool for pediatric aspiration: a systematic review. OTO Open 2023; 7 (01) e33
- 73 Jaoude PA, Knight PR, Ohtake P, El-Solh AA. Biomarkers in the diagnosis of aspiration syndromes. Expert Rev Mol Diagn 2010; 10 (03) 309-319
- 74 Colombo JL, Hallberg TK. Pulmonary aspiration and lipid-laden macrophages: in search of gold (standards). Pediatr Pulmonol 1999; 28 (02) 79-82
- 75 Zhu Y, Choi D, Somanath PR, Zhang D. Lipid-laden macrophages in pulmonary diseases. Cells 2024; 13 (11) 889
- 76 Rossi G, Cavazza A, Spagnolo P. et al. The role of macrophages in interstitial lung diseases: number 3 in the series “Pathology for the Clinician” edited by Peter Dorfmüller and Alberto Cavazza. Eur Respir Rev 2017; 26 (145) 170009
- 77 Aldhahrani A, Verdon B, Ward C, Pearson J. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases. ERJ Open Res 2017; 3 (01) 00107-2016
- 78 Zhang CYK, Ahmed M, Huszti E. et al. Utility of bile acids in large airway bronchial wash versus bronchoalveolar lavage as biomarkers of microaspiration in lung transplant recipients: a retrospective cohort study. Respir Res 2022; 23 (01) 219
- 79 Reder NP, Davis CS, Kovacs EJ, Fisichella PM. The diagnostic value of gastroesophageal reflux disease (GERD) symptoms and detection of pepsin and bile acids in bronchoalveolar lavage fluid and exhaled breath condensate for identifying lung transplantation patients with GERD-induced aspiration. Surg Endosc 2014; 28 (06) 1794-1800
- 80 D'Ovidio F, Mura M, Ridsdale R. et al. The effect of reflux and bile acid aspiration on the lung allograft and its surfactant and innate immunity molecules SP-A and SP-D. Am J Transplant 2006; 6 (08) 1930-1938
- 81 Savarino E, Carbone R, Marabotto E. et al. Gastro-oesophageal reflux and gastric aspiration in idiopathic pulmonary fibrosis patients. Eur Respir J 2013; 42 (05) 1322-1331
- 82 Bandorski D, Tello K, Erdal H. et al. Clinical utility of pepsin and bile acid in tracheal secretions for accurate diagnosis of aspiration in ICU patients. J Clin Med 2023; 12 (17) 5466
- 83 Sweet MP, Patti MG, Hoopes C, Hays SR, Golden JA. Gastro-oesophageal reflux and aspiration in patients with advanced lung disease. Thorax 2009; 64 (02) 167-173
- 84 Adnet F, Borron SW, Vicaut E. et al. Value of C-reactive protein in the detection of bacterial contamination at the time of presentation in drug-induced aspiration pneumonia. Chest 1997; 112 (02) 466-471
- 85 El Solh AA, Akinnusi ME, Peter M, Berim I, Schultz MJ, Pineda L. Triggering receptors expressed on myeloid cells in pulmonary aspiration syndromes. Intensive Care Med 2008; 34 (06) 1012-1019
- 86 Mylotte JM, Goodnough S, Gould M. Pneumonia versus aspiration pneumonitis in nursing home residents: prospective application of a clinical algorithm. J Am Geriatr Soc 2005; 53 (05) 755-761
- 87 Stolz D. Procalcitonin in severe community-acquired pneumonia: some precision medicine ready for prime time. Chest 2016; 150 (04) 769-771
- 88 Karakioulaki M, Stolz D. Biomarkers in pneumonia-beyond procalcitonin. Int J Mol Sci 2019; 20 (08) 2004
- 89 Pusch F, Wildling E, Freitag H, Weinstabl C. Procalcitonin as a diagnostic marker in patients with aspiration after closed head injury. Wien Klin Wochenschr 2001; 113 (17–18): 676-680
- 90 Binz J, Heft M, Robinson S, Jensen H, Newton J. Utilizing procalcitonin in a clinical setting to help differentiate between aspiration pneumonia and aspiration pneumonitis. Diagn Microbiol Infect Dis 2023; 105 (01) 115821
- 91 El-Solh AA, Vora H, Knight III PR, Porhomayon J. Diagnostic use of serum procalcitonin levels in pulmonary aspiration syndromes. Crit Care Med 2011; 39 (06) 1251-1256
- 92 Upadhyay S, Niederman MS. Biomarkers: what is their benefit in the identification of infection, severity assessment, and management of community-acquired pneumonia?. Infect Dis Clin North Am 2013; 27 (01) 19-31
- 93 Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol 2006; 7 (12) 1266-1273
- 94 Gibot S, Cravoisy A, Levy B, Bene MC, Faure G, Bollaert PE. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 2004; 350 (05) 451-458
- 95 Wang Z, Chi H, Sun Y. et al. Serum sTREM-1 in adult-onset Still's disease: a novel biomarker of disease activity and a potential predictor of the chronic course. Rheumatology (Oxford) 2020; 59 (11) 3293-3302
- 96 Saurer L, Rihs S, Birrer M, Saxer-Seculic N, Radsak M, Mueller C. Swiss IBD Cohort Study. Elevated levels of serum-soluble triggering receptor expressed on myeloid cells-1 in patients with IBD do not correlate with intestinal TREM-1 mRNA expression and endoscopic disease activity. J Crohns Colitis 2012; 6 (09) 913-923
- 97 Giamarellos-Bourboulis EJ, Mouktaroudi M, Tsaganos T. et al. Evidence for the participation of soluble triggering receptor expressed on myeloid cells-1 in the systemic inflammatory response syndrome after multiple trauma. J Trauma 2008; 65 (06) 1385-1390
- 98 Wei C, Cheng Z, Zhang L, Yang J. Microbiology and prognostic factors of hospital- and community-acquired aspiration pneumonia in respiratory intensive care unit. Am J Infect Control 2013; 41 (10) 880-884
- 99 Gattarello S, Borgatta B, Solé-Violán J. et al; Community-Acquired Pneumonia en la Unidad de Cuidados Intensivos II Study Investigators*. Decrease in mortality in severe community-acquired pneumococcal pneumonia: impact of improving antibiotic strategies (2000-2013). Chest 2014; 146 (01) 22-31
- 100 Menéndez R, Torres A, Zalacaín R. et al; NEUMOFAIL Group. Guidelines for the treatment of community-acquired pneumonia: predictors of adherence and outcome. Am J Respir Crit Care Med 2005; 172 (06) 757-762
- 101 Garau J, Baquero F, Pérez-Trallero E. et al; NACER Group. Factors impacting on length of stay and mortality of community-acquired pneumonia. Clin Microbiol Infect 2008; 14 (04) 322-329
- 102 Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis 1991; 143 (5 Pt 1): 1121-1129
- 103 Ranzani OT, Senussi T, Idone F. et al. Invasive and non-invasive diagnostic approaches for microbiological diagnosis of hospital-acquired pneumonia. Crit Care 2019; 23 (01) 51
- 104 Fagon JY, Chastre J, Wolff M. et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 2000; 132 (08) 621-630
- 105 Dragan V, Wei Y, Elligsen M, Kiss A, Walker SAN, Leis JA. Prophylactic antimicrobial therapy for acute aspiration pneumonitis. Clin Infect Dis 2018; 67 (04) 513-518
- 106 Rebuck JA, Rasmussen JR, Olsen KM. Clinical aspiration-related practice patterns in the intensive care unit: a physician survey. Crit Care Med 2001; 29 (12) 2239-2244
- 107 Kane-Gill SL, Olsen KM, Rebuck JA. et al; Aspiration Evaluation Group of the Clinical Pharmacy and Pharmacology Section. Multicenter treatment and outcome evaluation of aspiration syndromes in critically ill patients. Ann Pharmacother 2007; 41 (04) 549-555
- 108 Son YG, Shin J, Ryu HG. Pneumonitis and pneumonia after aspiration. J Dent Anesth Pain Med 2017; 17 (01) 1-12
- 109 El-Solh AA, Pietrantoni C, Bhat A. et al. Microbiology of severe aspiration pneumonia in institutionalized elderly. Am J Respir Crit Care Med 2003; 167 (12) 1650-1654
- 110 Arancibia F, Bauer TT, Ewig S. et al. Community-acquired pneumonia due to gram-negative bacteria and Pseudomonas aeruginosa: incidence, risk, and prognosis. Arch Intern Med 2002; 162 (16) 1849-1858
- 111 Darie AM, Khanna N, Jahn K. et al. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): a multicentre, randomised controlled trial. Lancet Respir Med 2022; 10 (09) 877-887
- 112 Poole S, Tanner AR, Naidu VV. et al. Molecular point-of-care testing for lower respiratory tract pathogens improves safe antibiotic de-escalation in patients with pneumonia in the ICU: results of a randomised controlled trial. J Infect 2022; 85 (06) 625-633
- 113 Darie AM, Stolz D. Multiplex bacterial PCR for antibiotic stewardship in pneumonia - author's reply. Lancet Respir Med 2022; 10 (09) e79
- 114 Salina A, Schumann DM, Franchetti L. et al. Multiplex bacterial PCR in the bronchoalveolar lavage fluid of non-intubated patients with suspected pulmonary infection: a quasi-experimental study. ERJ Open Res 2022; 8 (02) 00595-2021
- 115 Lomotan JR, George SS, Brandstetter RD. Aspiration pneumonia. Strategies for early recognition and prevention. Postgrad Med 1997; 102 (02) 225-226 , 229–231
- 116 Neill S, Dean N. Aspiration pneumonia and pneumonitis: a spectrum of infectious/noninfectious diseases affecting the lung. Curr Opin Infect Dis 2019; 32 (02) 152-157
- 117 Scala R, Guidelli L. Clinical value of bronchoscopy in acute respiratory failure. Diagnostics (Basel) 2021; 11 (10) 1755
- 118 Lee HW, Min J, Park J. et al. Clinical impact of early bronchoscopy in mechanically ventilated patients with aspiration pneumonia. Respirology 2015; 20 (07) 1115-1122
- 119 Megahed MM, El-Menshawy AM, Ibrahim AM. Use of early bronchoscopy in mechanically ventilated patients with aspiration pneumonitis. Indian J Crit Care Med 2021; 25 (02) 146-152
- 120 Mise K, Jurcev Savicevic A, Pavlov N, Jankovic S. Removal of tracheobronchial foreign bodies in adults using flexible bronchoscopy: experience 1995-2006. Surg Endosc 2009; 23 (06) 1360-1364