Vet Comp Orthop Traumatol
DOI: 10.1055/s-0044-1788316
Review Article

Biomechanical Principles of Intramedullary Nails in Veterinary and Human Medicine

Morgan R. Sisk
1   Department of Orthopaedic Surgery, University of Alabama in Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
,
Lydia C. Yang
1   Department of Orthopaedic Surgery, University of Alabama in Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
,
Kyle D. Paul
1   Department of Orthopaedic Surgery, University of Alabama in Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
,
Joseph W. Elphingstone
2   Department of Orthopaedic Surgery, University of Alabama in Birmingham, Birmingham, Alabama, United States
,
Eugene W. Brabston
2   Department of Orthopaedic Surgery, University of Alabama in Birmingham, Birmingham, Alabama, United States
,
Brent A. Ponce
3   Hughston Foundation, Hughston Clinic, Columbus, Georgia, United States
,
Elliott C. Martin
4   VCA Liberty Animal Hospital, Birmingham, Alabama, United States
,
5   Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, Alabama, United States
› Author Affiliations
Funding This research did not receive any direct funding. K.M.C. receives funding support from Morris Animal Foundation, Presidential Awards for Interdisciplinary Research from Auburn University, Veterinary Orthopaedic Implants, and Animal Nutritional Products. B.A.P. receives funding support from Stryker, ODI North America, and Smith & Nephew.

Abstract

Intramedullary nails are specialized metal rods inserted into the medullary cavity of a fractured bone and secured to reduce load on the fracture site, provide stability, and permit healing. The purpose of this review is to highlight the biomechanics of orthopaedic intramedullary nailing, as well as discuss the biomechanical considerations that have shaped implant design and fixation technique in veterinary and human medicine. Relevant studies were included from the PubMed database and Google Scholar for discussion on the basic science and nail design of intramedullary nails. Implant design and implementation continues to progress, with new innovative designs currently under investigation. A lack of consensus remains on the superior implant material. Recent studies, particularly in human populations, have supported the use of reaming based on reoperation rates, nonunion rates, and dynamization. Design modifications, such as the expandable intramedullary nails and angle-stable interlocking designs, have been investigated as methods of improving cortical contact and resisting torsional stress. Intramedullary nailing is a valuable stabilization technique for long bone fractures across a variety of species. The technology continues to undergo design improvements in both veterinary and human medicine.

Authors' Contribution

All authors made meaningful contributions to this work. M.R.S., L.C.Y., K.D.P., E.W.B., B.A.P., E.C.M., and K.M.C. contributed to the study conception and design. M.R.S., L.C.Y., and K.D.P. contributed to acquisition of data. M.R.S., L.C.Y., and J.W.E. contributed to data interpretation and integration. M.R.S. and L.C.Y. generated the figures and drafted the manuscript. All authors contributed to revision and development of the manuscript.


aAssuming a solid cylinder configuration,


k T = torsional stiffness of shaft (Nm/rad)


k B = bending stiffness of shaft (1/m)


G = shear modulus of elasticity (N/m2)[13]


L = length of rod (m)


D = diameter (m).


bUnder a cantilever beam, uniform load distribution,


E = elastic modulus of elasticity (N/m2)[13]


I = Moment of Inertia, for a solid beam and for a hollow beam (m4)


L = length of rod (m)


Q = load (N/m).




Publication History

Received: 24 July 2023

Accepted: 25 June 2024

Article published online:
09 July 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bong MR, Kummer FJ, Koval KJ, Egol KA. Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Surg 2007; 15 (02) 97-106
  • 2 van Niekerk JLM, Schoots FJ. Femoral shaft fractures treated with plate fixation and interlocked nailing: a comparative retrospective study. Injury 1992; 23 (04) 219-222
  • 3 Rosa N, Marta M, Vaz M. et al. Intramedullary nailing biomechanics: evolution and challenges. Proc Inst Mech Eng H 2019; 233 (03) 295-308
  • 4 Born CT, Pidgeon T, Taglang G. 75 years of contemporary intramedullary nailing. J Orthop Trauma 2014; 28 (Suppl. 08) S1-S2
  • 5 Winquist RA, Hansen Jr ST, Clawson DK. Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases. J Bone Joint Surg Am 1984; 66 (04) 529-539
  • 6 Bong MR, Koval KJ, Egol KA. The history of intramedullary nailing. Bull NYU Hosp Jt Dis 2006; 64 (3–4): 94-97
  • 7 Hulse D, Hyman W, Nori M, Slater M. Reduction in plate strain by addition of an intramedullary pin. Vet Surg 1997; 26 (06) 451-459
  • 8 Cristofolini L, Viceconti M. Mechanical validation of whole bone composite tibia models. J Biomech 2000; 33 (03) 279-288
  • 9 Kojima KE, Pires RES. Absolute and relative stabilities for fracture fixation: the concept revisited. Injury 2017; 48 (Suppl. 04) S1
  • 10 Dueland RT, Berglund L, Vanderby Jr R, Chao EYS. Structural properties of interlocking nails, canine femora, and femur-interlocking nail constructs. Vet Surg 1996; 25 (05) 386-396
  • 11 Wheeler JL, Stubbs PW, Lewis DD, Cross AR, Guerin SR. Intramedullary interlocking nail fixation in dogs and cats: biomechanics and instrumentation. Compendium 2004; 26 (07) 519-529
  • 12 Deprey J, Blondel M, Saban C. et al. Mechanical evaluation of a novel angle-stable interlocking nail in a gap fracture model. Vet Surg 2022; 51 (08) 1247-1256
  • 13 von Pfeil DJF, Déjardin LM, DeCamp CE. et al. In vitro biomechanical comparison of a plate-rod combination-construct and an interlocking nail-construct for experimentally induced gap fractures in canine tibiae. Am J Vet Res 2005; 66 (09) 1536-1543
  • 14 Muir P, Johnson KA. Tibial intercalary allograft incorporation: comparison of fixation with locked intramedullary nail and dynamic compression plate. J Orthop Res 1995; 13 (01) 132-137
  • 15 Steward SKT, Brodin E, Gadomski B, Nelson B, Easley J. Mechanical comparison of application of locking intramedullary nail to locking compression plate in the ovine metatarsus. Ann Transl Med 2023; 11 (05) 191-191
  • 16 Samiezadeh S, Tavakkoli Avval P, Fawaz Z, Bougherara H. Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: a finite element study. Clin Biomech (Bristol, Avon) 2014; 29 (07) 803-810
  • 17 Harris CM, Piersol AG. eds. Harris' Shock and Vibration Handbook. 5th ed.. New York, NY: McGraw-Hill; 2002
  • 18 Gere JM, Timoshenko SP. Mechanics of Materials. Boston, MA: PWS Publishing Company; 1997
  • 19 Muir P, Johnson KA, Markel MD. Area moment of inertia for comparison of implant cross-sectional geometry and bending stiffness. Vet Comp Orthop Traumatol 1995; 08 (03) 146-152
  • 20 Dueland RT, Vanderby R, McCabe RP. Fatigue study of six and eight mm diameter interlocking nails with screw holes of variable size and number. Vet Comp Orthop Traumatol 1997; 10 (04) 194-199
  • 21 Macedo AS, Moens NM, Runciman J, Gibson TW, Minto BW. Ex vivo torsional properties of a 2.5 mm veterinary interlocking nail system in canine femurs. Comparison with a 2.4 mm limited contact bone plate. Vet Comp Orthop Traumatol 2017; 30 (02) 118-124
  • 22 Stedtfeld HW. Rationale of intramedullary nailing. Intramedullary Nailing 2015; 13-25
  • 23 Eveleigh RJ. A review of biomechanical studies of intramedullary nails. Med Eng Phys 1995; 17 (05) 323-331
  • 24 Horn J, Schlegel U, Krettek C, Ito K. Infection resistance of unreamed solid, hollow slotted and cannulated intramedullary nails: an in-vivo experimental comparison. J Orthop Res 2005; 23 (04) 810-815
  • 25 Marengo L, Nasto LA, Michelis MB, Boero S. Elastic stable intramedullary nailing (ESIN) in paediatric femur and tibia shaft fractures: comparison between titanium and stainless steel nails. Injury 2018; 49 (Suppl. 03) S8-S11
  • 26 Barber CC, Burnham M, Ojameruaye O, McKee MD. A systematic review of the use of titanium versus stainless steel implants for fracture fixation. OTA Int 2021; 4 (03) e138
  • 27 M S A, Jaiswal S, Dubey A, Lahiri D, Das AK. Biocompatibility and biodegradability evaluation of magnesium-based intramedullary bone implants in avian model. J Biomed Mater Res A 2021; 109 (08) 1479-1489
  • 28 Garlock AN, Donovan J, LeCronier DJ, Houghtaling J, Burton S, Atkinson PJ. A modified intramedullary nail interlocking design yields improved stability for fatigue cycling in a canine femur fracture model. Proc Inst Mech Eng H 2012; 226 (06) 469-476
  • 29 Rose DM, Smith TO, Nielsen D, Hing CB. Expandable intramedullary nails in lower limb trauma: a systematic review of clinical and radiological outcomes. Strateg Trauma Limb Reconstr 2013; 8 (01) 1-12
  • 30 Chung WDL. Mechanical comparison of straight and pre-bent interlocking nails used for the stabilization of tibial fractures. In: Scientific Presentation Abstracts: 2023 ECVS 32nd Annual Scientific Meeting; Cracow, Poland, 6–8 July 2023
  • 31 Kajzer A, Kajzer W, Marciniak J. Expandable intramedullary nail-experimental biomechanical evaluation. Arch Mater Sci Eng 2010; 41 (01) 45-52
  • 32 Plenert T, Garlichs G, Nolte I. et al. Biomechanical comparison of a new expandable intramedullary nail and conventional intramedullary nails for femoral osteosynthesis in dogs. PLoS One 2020; 15 (05) e0231823
  • 33 Bek D, Demiralp B, Tunay S, Sehirlioğlu A, Ateşalp AS. Removal of a bent inflatable femoral nail: a case report [in Turkish]. Acta Orthop Traumatol Turc 2008; 42 (03) 211-213
  • 34 Liodakis E, Krettek C, Kenawey M, Hankemeier S. A new technique for removal of an incarcerated expandable femoral nail. Clin Orthop Relat Res 2010; 468 (05) 1405-1409
  • 35 Saunders WB, Dejardin LM, Soltys-Niemann EV. et al. Angle-stable interlocking nailing in a canine critical-sized femoral defect model for bone regeneration studies: in pursuit of the principle of the 3R's. Front Bioeng Biotechnol 2022; 10: 921486
  • 36 Déjardin LM, Guillou RP, Ting D, Sinnott MT, Meyer E, Haut RC. Effect of bending direction on the mechanical behaviour of interlocking nail systems. Vet Comp Orthop Traumatol 2009; 22 (04) 264-269
  • 37 Virk JS, Garg SK, Gupta P, Jangira V, Singh J, Rana S. Distal femur locking plate: the answer to all distal femoral fractures. J Clin Diagn Res 2016; 10 (10) RC01-RC05
  • 38 Marturello DM, Perry KL, Déjardin LM. Clinical application of the small I-Loc interlocking nail in 30 feline fractures: a prospective study. Vet Surg 2021; 50 (03) 588-599
  • 39 Déjardin LM, Perry KL, von Pfeil DJF, Guiot LP. Interlocking nails and minimally invasive osteosynthesis. Vet Clin North Am Small Anim Pract 2020; 50 (01) 67-100
  • 40 Laux CJ, Grubhofer F, Werner CML, Simmen HP, Osterhoff G. Current concepts in locking plate fixation of proximal humerus fractures. J Orthop Surg Res 2017; 12 (01) 137
  • 41 Fauron A, Déjardin L, Phillips R, Gazzola K, Perry K. Clinical application of the I–LOC angle-stable interlocking nail in 100 traumatic fractures of the humerus, femur and tibia. Vet Comp Orthop Traumatol 2018; 31 (S 02): A1-A25
  • 42 Mund GM, Bitterli T, Häußler TC, Gerwing M, Feichtenschlager C. Management of feline femoral, tibial and humeral fractures using a 3.5 mm titanium interlocking nail. Vet Comp Orthop Traumatol 2023; 36 (01) 53-62
  • 43 Marturello DM, Perry KL, Déjardin LM. Feline I-Loc 42 fractures in 41 cats. Vet Surg 2023; 52 (01) 17-17
  • 44 Marturello DM, Gazzola KM, Déjardin LM. Tibial fracture repair with angle-stable interlocking nailing in 2 calves. Vet Surg 2019; 48 (04) 597-606
  • 45 Marturello DM, von Pfeil DJF, Déjardin LM. Evaluation of a feline bone surrogate and in vitro mechanical comparison of small interlocking nail systems in mediolateral bending. Vet Comp Orthop Traumatol 2021; 34 (04) 223-233
  • 46 Marturello DM, von Pfeil DJF, Déjardin LM. Mechanical comparison of two small interlocking nails in torsion using a feline bone surrogate. Vet Surg 2020; 49 (02) 380-389
  • 47 Brückner M, Unger M, Spies M. Early clinical experience with a newly designed interlocking nail System-Targon(®) Vet. Vet Surg 2016; 45 (06) 754-763
  • 48 Thelen S, Betsch M, Grassmann JP. et al. Angle stable locking nails versus conventionally locked intramedullary nails in proximal tibial shaft fractures: a biomechanical study. Arch Orthop Trauma Surg 2012; 132 (01) 57-63
  • 49 Horn J, Linke B, Höntzsch D, Gueorguiev B, Schwieger K. Angle stable interlocking screws improve construct stability of intramedullary nailing of distal tibia fractures: a biomechanical study. Injury 2009; 40 (07) 767-771
  • 50 Burns CG, Litsky AS, Allen MJ, Johnson KA. Influence of locking bolt location on the mechanical properties of an interlocking nail in the canine femur. Vet Surg 2011; 40 (05) 522-530
  • 51 Roels J, Hebrard L, Saban C. et al Retrospective study of the early clinical experience with a precontoured angle-stable interlocking nail for fracture repair in dogs and cats. Am J Vet Res 2024; 27: 1-10
  • 52 Duan X, Li T, Mohammed AQ, Xiang Z. Reamed intramedullary nailing versus unreamed intramedullary nailing for shaft fracture of femur: a systematic literature review. Arch Orthop Trauma Surg 2011; 131 (10) 1445-1452
  • 53 Rudloff MI, Smith WR. Intramedullary nailing of the femur: current concepts concerning reaming. J Orthop Trauma 2009; 23 (5, Suppl): S12-S17
  • 54 Högel F, Gerlach UV, Südkamp NP, Müller CA. Pulmonary fat embolism after reamed and unreamed nailing of femoral fractures. Injury 2010; 41 (12) 1317-1322
  • 55 Halvachizadeh S, Teuben M, Lempert M. et al. Protective effects of new femoral reaming techniques (Reamer irrigator aspirator, RIA I and II) on pulmonary function and posttraumatic contusion (CT morphology) - results from a standardized large animal model. Injury 2021; 52 (01) 26-31
  • 56 Teuben MPJ, Halvachizadeh S, Kalbas Y. et al; TREAT Research Group. Cellular activation status in femoral shaft fracture hematoma following different reaming techniques - a large animal model. J Orthop Res 2022; 40 (12) 2822-2830
  • 57 Kuzyk PRT, Li R, Zdero R, Davies JE, Schemitsch EH. The effect of intramedullary reaming on a diaphyseal bone defect of the tibia. J Trauma 2011; 70 (05) 1248-1256
  • 58 Bhandari M, Guyatt G, Tornetta III P. et al; Study to Prospectively Evaluate Reamed Intramedullary Nails in Patients with Tibial Fractures Investigators. Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures. J Bone Joint Surg Am 2008; 90 (12) 2567-2578
  • 59 Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998; 139 (02) 663-670
  • 60 Planner F, Feichtner F, Meyer-Lindenberg A. The cat as a small dog?-Comparison of trabecular and cortical bone microarchitecture of radius and ulna in cats and small dogs using microcomputed tomography. Vet Med Sci 2021; 7 (06) 2113-2119