Neuropediatrics
DOI: 10.1055/s-0044-1788061
Review Article

Minimally Invasive Epilepsy Surgery

1   University of Chicago Comer Children's Hospital, Chicago, Illinois, United States
,
Mohamed Taha
1   University of Chicago Comer Children's Hospital, Chicago, Illinois, United States
,
Brin Freund
2   Mayo Clinic in Florida, Jacksonville, Florida, United States
,
Douglas R. Nordli Jr
1   University of Chicago Comer Children's Hospital, Chicago, Illinois, United States
,
Fernando Galan
3   Nemours Children's Health System, Jacksonville, Florida, United States
› Author Affiliations

Abstract

Surgery remains a critical and often necessary intervention for a subset of patients with epilepsy. The overarching objective of surgical treatment has consistently been to enhance the quality of life for these individuals, either by achieving seizure freedom or by eliminating debilitating seizure types. This review specifically examines minimally invasive surgical approaches for epilepsy. Contemporary advancements have introduced a range of treatments that offer increased safety and efficacy compared to traditional open resective epilepsy surgeries. This manuscript provides a comprehensive review of these techniques and technologies.

Ethical Approval

Ethical approval and informed consent were not sought as the manuscript is a review article which does not use patient-identifiable information and did not collect research or data collection.




Publication History

Received: 15 April 2024

Accepted: 18 June 2024

Article published online:
10 July 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Schijns OE, Hoogland G, Kubben PL, Koehler PJ. The start and development of epilepsy surgery in Europe: a historical review. Neurosurg Rev 2015; 38 (03) 447-461
  • 2 Feindel W, Leblanc R, de Almeida AN. Epilepsy surgery: historical highlights 1909-2009. Epilepsia 2009; 50 (Suppl. 03) 131-151
  • 3 Téllez-Zenteno JF, Hernández Ronquillo L, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 2010; 89 (2-3): 310-318
  • 4 López-Rivera JA, Smuk V, Leu C. et al. Incidence and prevalence of major epilepsy-associated brain lesions. Epilepsy Behav Rep 2022; 18: 100527
  • 5 Hoppe C, Beeres K, Witt JA, Sassen R, Helmstaedter C. Clinical adult outcome 11-30 years after pediatric epilepsy surgery: complications and other surgical adverse events, seizure control, and cure of epilepsy. Epilepsia 2023; 64 (02) 335-347
  • 6 Ebersole JS. EEG source imaging in presurgical evaluations. J Clin Neurophysiol 2024; 41 (01) 36-49
  • 7 Vogrin SJ, Plummer C. EEG source imaging-clinical considerations for EEG acquisition and signal processing for improved temporo-spatial resolution. J Clin Neurophysiol 2024; 41 (01) 8-18
  • 8 Wang I, Oh S, Blümcke I. et al. Value of 7T MRI and post-processing in patients with nonlesional 3T MRI undergoing epilepsy presurgical evaluation. Epilepsia 2020; 61 (11) 2509-2520
  • 9 Burkett BJ, Fagan AJ, Felmlee JP. et al. Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges. Neuroradiology 2021; 63 (02) 167-177
  • 10 Qu L, Zhang Y, Wang S, Yap P-T, Shen D. Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains. Med Image Anal 2020; 62: 101663
  • 11 Rathore C, Dickson JC, Teotónio R, Ell P, Duncan JS. The utility of 18F-fluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res 2014; 108 (08) 1306-1314
  • 12 Knowlton RC. The role of FDG-PET, ictal SPECT, and MEG in the epilepsy surgery evaluation. Epilepsy Behav 2006; 8 (01) 91-101
  • 13 Yassin A, El-Salem K, Al-Mistarehi AH. et al. Use of innovative SPECT techniques in the presurgical evaluation of patients with nonlesional extratemporal drug-resistant epilepsy. Mol Imaging 2021; 2021: 6614356
  • 14 Nordli III DR, Galan FN. Pediatric magnetoencephalography. Ann Child Neurol Soc 2023; 1 (02) 123-128
  • 15 Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde J-H, van Huffelen AC, Leijten FS. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain 2007; 130 (Pt 9): 2343-2353
  • 16 Nordli III DR, Collins J, Warnke P, Nordli Jr DR. Paradigm found: epileptogenic zone identified by fMRI in ictal fixation off sensitivity. Epileptic Disord 2023
  • 17 Coan AC, Chaudhary UJ, Grouiller F. et al. EEG-fMRI in the presurgical evaluation of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 2015
  • 18 Stoyell SM, Wilmskoetter J, Dobrota MA. et al. High density EEG in current clinical practice and opportunities for the future. J Clin Neurophysiol 2021; 38 (02) 112-123
  • 19 Prince E, Hakimian S, Ko AL, Ojemann JG, Kim MS, Miller JW. Laser interstitial thermal therapy for epilepsy. Curr Neurol Neurosci Rep 2017; 17 (09) 63
  • 20 Cajigas I, Kanner AM, Ribot R. et al. Magnetic resonance–guided laser interstitial thermal therapy for mesial temporal epilepsy: a case series analysis of outcomes and complications at 2-year follow-up. World Neurosurg 2019; 126: e1121-e1129
  • 21 Gupta K, Cabaniss B, Kheder A. et al. Stereotactic MRI-guided laser interstitial thermal therapy for extratemporal lobe epilepsy. Epilepsia 2020; 61 (08) 1723-1734
  • 22 Lhatoo S, Lacuey N, Ryvlin P. Principles of stereotactic electroencephalography in epilepsy surgery. J Clin Neurophysiol 2016; 33 (06) 478-482
  • 23 McGovern RA, Ruggieri P, Bulacio J, Najm I, Bingaman WE, Gonzalez-Martinez JA. Risk analysis of hemorrhage in stereo-electroencephalography procedures. Epilepsia 2019; 60 (03) 571-580
  • 24 Gotman J, Chauvel P, Pickard AA. et al. A Practical Approach to Stereo EEG. 1st ed.. New York: Springer Publishing Company; 2020
  • 25 Palma AE, Wicks RT, Popli G, Couture DE. Corpus callosotomy via laser interstitial thermal therapy: a case series. J Neurosurg Pediatr 2018; 23 (03) 303-307
  • 26 Awad AJ, Kaiser KN. Laser ablation for corpus callosotomy: systematic review and pooled analysis. Seizure 2022; 96: 137-141
  • 27 Chua MM, Stone SS, Patel A, Madsen JR. Functional hemispherotomy using magnetic resonance (MR)-guided laser induced thermal therapy (LITT). Neurosurgery 2020 (e-pub ahead of print) DOI: 10.1093/neuros/nyaa447_623
  • 28 Mendoza-Elias N, Satzer D, Henry J, Nordli Jr DR, Warnke PC. Tailored hemispherotomy using tractography-guided laser interstitial thermal therapy. Oper Neurosurg (Hagerstown) 2023; 24 (06) e407-e413
  • 29 Voges J, Büntjen L, Schmitt FC. Radiofrequency-thermoablation: general principle, historical overview and modern applications for epilepsy. Epilepsy Res 2018; 142: 113-116
  • 30 Patil AA, de Joya J. Minimally invasive surgical techniques in patients with intractable epilepsy with CT-guided stereotactic cryoablation as a superior alternative: a systematic review. Egypt J Neurosurg 2022; 37 (01) 35
  • 31 George MS, Nahas Z, Bohning DE. et al. Mechanisms of action of vagus nerve stimulation (VNS). Clin Neurosci Res 2004; 4 (1–2): 71-79
  • 32 Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol 2002; 1 (08) 477-482
  • 33 Skrehot HC, Englot DJ, Haneef Z. Neuro-stimulation in focal epilepsy: a systematic review and meta-analysis. Epilepsy Behav 2023; 142: 109182
  • 34 Sun FT, Morrell MJ. The RNS system: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev Med Devices 2014; 11 (06) 563-572
  • 35 Chiang S, Khambhati AN, Wang ET, Vannucci M, Chang EF, Rao VR. Evidence of state-dependence in the effectiveness of responsive neurostimulation for seizure modulation. Brain Stimul 2021; 14 (02) 366-375
  • 36 O'Donnell CM, Anderson CT, Oleksy AJ, Swanson SJ. A comparison of neuropsychological outcomes following responsive neurostimulation and anterior temporal lobectomy in drug-resistant epilepsy. Brain Sci 2023; 13 (12) 1628
  • 37 Chiang S, Fan JM, Rao VR. Bilateral temporal lobe epilepsy: how many seizures are required in chronic ambulatory electrocorticography to estimate the laterality ratio?. Epilepsia 2022; 63 (01) 199-208
  • 38 Li MCH, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia 2018; 59 (02) 273-290
  • 39 Salanova V, Sperling MR, Gross RE. et al; SANTÉ Study Group. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 2021; 62 (06) 1306-1317
  • 40 Gross RE, Fisher RS, Sperling MR, Giftakis JE, Stypulkowski PH. Analysis of deep brain stimulation lead targeting in the stimulation of anterior nucleus of the thalamus for epilepsy clinical trial. Neurosurgery 2021; 89 (03) 406-412
  • 41 Freund BE, Greco E, Okromelidze L. et al. Clinical outcome of imaging-based programming for anterior thalamic nucleus deep brain stimulation. J Neurosurg 2022; 138 (04) 1008-1015
  • 42 Saykin AJ, Stafiniak P, Robinson LJ. et al. Language before and after temporal lobectomy: specificity of acute changes and relation to early risk factors. Epilepsia 1995; 36 (11) 1071-1077
  • 43 Hoyt AT, Smith KA. Selective Amygdalohippocampectomy. Neurosurg Clin N Am 2016; 27 (01) 1-17
  • 44 Sood S, Marupudi NI, Asano E, Haridas A, Ham SD. Endoscopic corpus callosotomy and hemispherotomy. J Neurosurg Pediatr 2015; 16 (06) 681-686