Semin Neurol 2024; 44(03): 362-388
DOI: 10.1055/s-0044-1787047
Review Article

Update in Pediatric Neurocritical Care: What a Neurologist Caring for Critically Ill Children Needs to Know

Virginie Plante
1   Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
,
Meera Basu
1   Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
2   Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
,
Jennifer V. Gettings
2   Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
,
Matthew Luchette
1   Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
,
Kerri L. LaRovere
2   Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
,
The Pediatric Critical Nervous System Program (pCNSp) › Author Affiliations

Abstract

Currently nearly one-quarter of admissions to pediatric intensive care units (PICUs) worldwide are for neurocritical care diagnoses that are associated with significant morbidity and mortality. Pediatric neurocritical care is a rapidly evolving field with unique challenges due to not only age-related responses to primary neurologic insults and their treatments but also the rarity of pediatric neurocritical care conditions at any given institution. The structure of pediatric neurocritical care services therefore is most commonly a collaborative model where critical care medicine physicians coordinate care and are supported by a multidisciplinary team of pediatric subspecialists, including neurologists. While pediatric neurocritical care lies at the intersection between critical care and the neurosciences, this narrative review focuses on the most common clinical scenarios encountered by pediatric neurologists as consultants in the PICU and synthesizes the recent evidence, best practices, and ongoing research in these cases. We provide an in-depth review of (1) the evaluation and management of abnormal movements (seizures/status epilepticus and status dystonicus); (2) acute weakness and paralysis (focusing on pediatric stroke and select pediatric neuroimmune conditions); (3) neuromonitoring modalities using a pathophysiology-driven approach; (4) neuroprotective strategies for which there is evidence (e.g., pediatric severe traumatic brain injury, post–cardiac arrest care, and ischemic stroke and hemorrhagic stroke); and (5) best practices for neuroprognostication in pediatric traumatic brain injury, cardiac arrest, and disorders of consciousness, with highlights of the 2023 updates on Brain Death/Death by Neurological Criteria. Our review of the current state of pediatric neurocritical care from the viewpoint of what a pediatric neurologist in the PICU needs to know is intended to improve knowledge for providers at the bedside with the goal of better patient care and outcomes.



Publication History

Article published online:
24 May 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Fink EL, Kochanek PM, Tasker RC. et al; Prevalence of Acute critical Neurological Disease in Children: A Global Epidemiological Assessment (PANGEA) Investigators. International survey of critically ill children with acute neurologic insults: the prevalence of acute critical neurological disease in children: a global epidemiological assessment study. Pediatr Crit Care Med 2017; 18 (04) 330-342
  • 2 DeSanti RL, Balakrishnan B, Rice TB, Pineda JA, Ferrazzano PA. The utilization of critical care resources in pediatric neurocritical care patients. Pediatr Crit Care Med 2022; 23 (09) 676-686
  • 3 Williams CN, Piantino J, McEvoy C, Fino N, Eriksson CO. The burden of pediatric neurocritical care in the United States. Pediatr Neurol 2018; 89: 31-38
  • 4 Pollack MM, Holubkov R, Funai T. et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Simultaneous prediction of new morbidity, mortality, and survival without new morbidity from pediatric intensive care: a new paradigm for outcomes assessment. Crit Care Med 2015; 43 (08) 1699-1709
  • 5 Au AK, Carcillo JA, Clark RSB, Bell MJ. Brain injuries and neurological system failure are the most common proximate causes of death in children admitted to a pediatric intensive care unit. Pediatr Crit Care Med 2011; 12 (05) 566-571
  • 6 Tasker RC. Update on pediatric neurocritical care. Paediatr Anaesth 2014; 24 (07) 717-723
  • 7 Bell MJ, Carpenter J, Au AK. et al. Development of a pediatric neurocritical care service. Neurocrit Care 2009; 10 (01) 4-10
  • 8 LaRovere KL, Graham RJ, Tasker RC. Pediatric Critical Nervous System Program (pCNSp). Pediatric neurocritical care: a neurology consultation model and implication for education and training. Pediatr Neurol 2013; 48 (03) 206-211
  • 9 LaRovere KL, Murphy SA, Horak R. et al. Pediatric neurocritical care: evolution of a new clinical service in PICUs across the United States. Pediatr Crit Care Med 2018; 19 (11) 1039-1045
  • 10 Wainwright MS, Grimason M, Goldstein J. et al. Building a pediatric neurocritical care program: a multidisciplinary approach to clinical practice and education from the intensive care unit to the outpatient clinic. Semin Pediatr Neurol 2014; 21 (04) 248-254
  • 11 Kirschen MP, LaRovere K, Balakrishnan B. et al; Pediatric Neurocritical Care Research Group (PNCRG). A survey of neuromonitoring practices in North American pediatric intensive care units. Pediatr Neurol 2022; 126: 125-130
  • 12 Foreman B, Kapinos G, Wainwright MS. et al. Practice standards for the use of multimodality neuromonitoring: a Delphi consensus process. Crit Care Med 2023; 51 (12) 1740-1753
  • 13 Howard SW, Zhang Z, Buchanan P. et al. The cost of a pediatric neurocritical care program for traumatic brain injury: a retrospective cohort study. BMC Health Serv Res 2018; 18 (01) 20
  • 14 Erklauer JC, Thammasitboon S, Shekerdemian LS, Riviello JJ, Lai YC. Creating a robust community of practice as a foundation for the successful development of a pediatric neurocritical care program. Pediatr Neurol 2022; 136: 1-7
  • 15 Artusi CA, Dwivedi A, Romagnolo A. et al. Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2020; 91 (04) 426-433
  • 16 Trinka E, Cock H, Hesdorffer D. et al. A definition and classification of status epilepticus – report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 2015; 56 (10) 1515-1523
  • 17 Glauser T, Shinnar S, Gloss D. et al. Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the Guideline Committee of the American Epilepsy Society. Epilepsy Curr 2016; 16 (01) 48-61
  • 18 McKenzie KC, Hahn CD, Friedman JN. Emergency management of the paediatric patient with convulsive status epilepticus. Paediatr Child Health 2021; 26 (01) 50-66
  • 19 Chin RFM, Neville BGR, Peckham C, Wade A, Bedford H, Scott RC. Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol 2008; 7 (08) 696-703
  • 20 Becker LL, Gratopp A, Prager C, Elger CE, Kaindl AM. Treatment of pediatric convulsive status epilepticus. Front Neurol 2023; 14: 1175370
  • 21 Singh A, Stredny CM, Loddenkemper T. Pharmacotherapy for pediatric convulsive status epilepticus. CNS Drugs 2020; 34 (01) 47-63
  • 22 Gathwala G, Goel M, Singh J, Mittal K. Intravenous diazepam, midazolam and lorazepam in acute seizure control. Indian J Pediatr 2012; 79 (03) 327-332
  • 23 McTague A, Martland T, Appleton R. Drug management for acute tonic-clonic convulsions including convulsive status epilepticus in children. Cochrane Database Syst Rev 2018; 1 (01) CD001905
  • 24 Zhao ZY, Wang HY, Wen B, Yang ZB, Feng K, Fan JC. A comparison of midazolam, lorazepam, and diazepam for the treatment of status epilepticus in children: a network meta-analysis. J Child Neurol 2016; 31 (09) 1093-1107
  • 25 Sánchez Fernández I, Abend NS, Agadi S. et al; Pediatric Status Epilepticus Research Group (pSERG). Time from convulsive status epilepticus onset to anticonvulsant administration in children. Neurology 2015; 84 (23) 2304-2311
  • 26 Gaínza-Lein M, Sánchez Fernández I, Jackson M. et al; Pediatric Status Epilepticus Research Group. Association of time to treatment with short-term outcomes for pediatric patients with refractory convulsive status epilepticus. JAMA Neurol 2018; 75 (04) 410-418
  • 27 Stredny CM, Abend NS, Loddenkemper T. Towards acute pediatric status epilepticus intervention teams: Do we need “Seizure Codes”?. Seizure 2018; 58: 133-140
  • 28 Seinfeld S, Shinnar S, Sun S. et al; FEBSTAT Study Team. Emergency management of febrile status epilepticus: results of the FEBSTAT study. Epilepsia 2014; 55 (03) 388-395
  • 29 Vasquez A, Gaínza-Lein M, Abend NS. et al; Pediatric Status Epilepticus Research Group (pSERG). First-line medication dosing in pediatric refractory status epilepticus. Neurology 2020; 95 (19) e2683-e2696
  • 30 Keene JC, Woods B, Wainwright M, King M, Morgan LA. Optimized benzodiazepine treatment of pediatric status epilepticus through a standardized emergency medical services resuscitation tool. Pediatr Neurol 2022; 126: 50-55
  • 31 Alldredge BK, Gelb AM, Isaacs SM. et al. A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N Engl J Med 2001; 345 (09) 631-637
  • 32 Guterman EL, Sanford JK, Betjemann JP. et al. Prehospital midazolam use and outcomes among patients with out-of-hospital status epilepticus. Neurology 2020; 95 (24) e3203-e3212
  • 33 Stewart WA, Harrison R, Dooley JM. Respiratory depression in the acute management of seizures. Arch Dis Child 2002; 87 (03) 225-226
  • 34 Chamberlain JM, Kapur J, Shinnar S. et al; Neurological Emergencies Treatment Trials, Pediatric Emergency Care Applied Research Network investigators. Efficacy of levetiracetam, fosphenytoin, and valproate for established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised controlled trial. Lancet 2020; 395 (10231): 1217-1224
  • 35 Kapur J, Elm J, Chamberlain JM. et al; NETT and PECARN Investigators. Randomized trial of three anticonvulsant medications for status epilepticus. N Engl J Med 2019; 381 (22) 2103-2113
  • 36 Dalziel SR, Borland ML, Furyk J. et al; PREDICT Research Network. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet 2019; 393 (10186): 2135-2145
  • 37 Lyttle MD, Rainford NEA, Gamble C. et al; Paediatric Emergency Research in the United Kingdom & Ireland (PERUKI) Collaborative. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet 2019; 393 (10186): 2125-2134
  • 38 İşgüder R, Güzel O, Ceylan G, Yılmaz Ü, Ağın H. A comparison of intravenous levetiracetam and valproate for the treatment of refractory status epilepticus in children. J Child Neurol 2016; 31 (09) 1120-1126
  • 39 Appleton RE, Rainford NE, Gamble C. et al. Levetiracetam as an alternative to phenytoin for second-line emergency treatment of children with convulsive status epilepticus: the EcLiPSE RCT. Health Technol Assess 2020; 24 (58) 1-96
  • 40 Klowak JA, Hewitt M, Catenacci V. et al. Levetiracetam versus phenytoin or fosphenytoin for second-line treatment of pediatric status epilepticus: a meta-analysis. Pediatr Crit Care Med 2021; 22 (09) e480-e491
  • 41 Jain P, Aneja S, Cunningham J, Arya R, Sharma S. Treatment of benzodiazepine-resistant status epilepticus: systematic review and network meta-analyses. Seizure 2022; 102: 74-82
  • 42 Summerlin JA, Scaturo N, Lund JA, Wang KM, Frank MA. Adverse events of undiluted intravenous push levetiracetam. Am J Emerg Med 2023; 73: 182-186
  • 43 Vasquez A, Farias-Moeller R, Sánchez-Fernández I. et al; Pediatric Status Epilepticus Research Group (pSERG). Super-refractory status epilepticus in children: a retrospective cohort study. Pediatr Crit Care Med 2021; 22 (12) e613-e625
  • 44 Vossler DG, Bainbridge JL, Boggs JG. et al. Treatment of refractory convulsive status epilepticus: a comprehensive review by the American Epilepsy Society Treatments Committee. Epilepsy Curr 2020; 20 (05) 245-264
  • 45 Fujikawa DG. Starting ketamine for neuroprotection earlier than its current use as an anesthetic/antiepileptic drug late in refractory status epilepticus. Epilepsia 2019; 60 (03) 373-380
  • 46 Dorandeu F, Dhote F, Barbier L, Baccus B, Testylier G. Treatment of status epilepticus with ketamine, are we there yet?. CNS Neurosci Ther 2013; 19 (06) 411-427
  • 47 Alkhachroum A, Der-Nigoghossian CA, Mathews E. et al. Ketamine to treat super-refractory status epilepticus. Neurology 2020; 95 (16) e2286-e2294
  • 48 Wasterlain CG, Baldwin R, Naylor DE, Thompson KW, Suchomelova L, Niquet J. Rational polytherapy in the treatment of acute seizures and status epilepticus. Epilepsia 2011; 52 (8, suppl 8): 70-71
  • 49 Rosati A, De Masi S, Guerrini R. Ketamine for refractory status epilepticus: a systematic review. CNS Drugs 2018; 32 (11) 997-1009
  • 50 Fang Y, Wang X. Ketamine for the treatment of refractory status epilepticus. Seizure 2015; 30: 14-20
  • 51 Höfler J, Trinka E. Intravenous ketamine in status epilepticus. Epilepsia 2018; 59 (Suppl. 02) 198-206
  • 52 Jacobwitz M, Mulvihill C, Kaufman MC. et al. Ketamine for management of neonatal and pediatric refractory status epilepticus. Neurology 2022; 99 (12) e1227-e1238
  • 53 Jacobwitz M, Mulvihill C, Kaufman MC. et al. A Comparison of Ketamine and Midazolam as First-Line Anesthetic Infusions for Pediatric Status Epilepticus. Neurocrit Care 2024; 40 (03) 984-995
  • 54 Rosati A, L'Erario M, Bianchi R. et al. KETASER01 protocol: what went right and what went wrong. Epilepsia Open 2022; 7 (03) 532-540
  • 55 Coles L, Rosenthal ES, Bleck TP. et al. Why ketamine. Epilepsy Behav 2023; 141: 109066
  • 56 Stavropoulos I, Khaw JH, Valentin A. Neuromodulation in new-onset refractory status epilepticus. Front Neurol 2023; 14: 1195844
  • 57 Arya R, Rotenberg A. Dietary, immunological, surgical, and other emerging treatments for pediatric refractory status epilepticus. Seizure 2019; 68: 89-96
  • 58 Zhang J, Sun J, Zheng P. et al. Clinical characteristics and follow-up of seizures in children with anti-NMDAR encephalitis. Front Neurol 2022; 12: 801289
  • 59 Cellucci T, Van Mater H, Graus F. et al. Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient. Neurol Neuroimmunol Neuroinflamm 2020; 7 (02) e663
  • 60 Nosadini M, Thomas T, Eyre M. et al. International consensus recommendations for the treatment of pediatric NMDAR antibody encephalitis. Neurol Neuroimmunol Neuroinflamm 2021; 8 (05) e1052
  • 61 Hirsch LJ, Gaspard N, van Baalen A. et al. Proposed consensus definitions for new-onset refractory status epilepticus (NORSE), febrile infection-related epilepsy syndrome (FIRES), and related conditions. Epilepsia 2018; 59 (04) 739-744
  • 62 Wickstrom R, Taraschenko O, Dilena R. et al; International NORSE Consensus Group. International consensus recommendations for management of new onset refractory status epilepticus including febrile infection-related epilepsy syndrome: statements and supporting evidence. Epilepsia 2022; 63 (11) 2840-2864
  • 63 Sheikh Z, Hirsch LJ. A practical approach to in-hospital management of new-onset refractory status epilepticus/febrile infection related epilepsy syndrome. Front Neurol 2023; 14: 1150496
  • 64 Vinette SA, Young GB, Khosravani H. Early identification of NORSE and transfer to care setting with appropriate supports: a proposed algorithm. Front Neurol 2023; 14: 1072020
  • 65 Sanger TD, Chen D, Fehlings DL. et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord 2010; 25 (11) 1538-1549
  • 66 Saini AG, Hassan I, Sharma K. et al. Status dystonicus in children: a cross-sectional study and review of literature. J Child Neurol 2022; 37 (06) 441-450
  • 67 Vogt LM, Yang K, Tse G. et al Recommendations for the management of initial and refractory pediatric status dystonicus. Mov Disord 2024; (e-pub ahead of print). DOI: 10.1002/mds.29794.
  • 68 Lumsden DE, Lundy C, Fairhurst C, Lin JP. Dystonia severity action plan: a simple grading system for medical severity of status dystonicus and life-threatening dystonia. Dev Med Child Neurol 2013; 55 (07) 671-672
  • 69 Lumsden DE, King MD, Allen NM. Status dystonicus in childhood. Curr Opin Pediatr 2017; 29 (06) 674-682
  • 70 Lumsden DE, Kaminska M, Tomlin S, Lin JP. Medication use in childhood dystonia. Eur J Paediatr Neurol 2016; 20 (04) 625-629
  • 71 Gorodetsky C, Fasano A. Approach to the treatment of pediatric dystonia. Dystonia 2022; 1: 10287
  • 72 Fehlings D, Brown L, Harvey A. et al. Pharmacological and neurosurgical interventions for managing dystonia in cerebral palsy: a systematic review. Dev Med Child Neurol 2018; 60 (04) 356-366
  • 73 Bledsoe IO, Viser AC, San Luciano M. Treatment of dystonia: medications, neurotoxins, neuromodulation, and rehabilitation. Neurotherapeutics 2020; 17 (04) 1622-1644
  • 74 Mallick AA, Ganesan V, Kirkham FJ. et al. Diagnostic delays in paediatric stroke. J Neurol Neurosurg Psychiatry 2015; 86 (08) 917-921
  • 75 Surtees TL, Pearson R, Harrar DB, Lee S, Amlie-Lefond CM, Guilliams KP. Acute hospital management of pediatric stroke. Semin Pediatr Neurol 2022; 43: 100990
  • 76 Ferriero DM, Fullerton HJ, Bernard TJ. et al; American Heart Association Stroke Council and Council on Cardiovascular and Stroke Nursing. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association. Stroke 2019; 50 (03) e51-e96
  • 77 Shack M, Andrade A, Shah-Basak PP. et al; Acute Stroke Protocol study group. A pediatric institutional acute stroke protocol improves timely access to stroke treatment. Dev Med Child Neurol 2017; 59 (01) 31-37
  • 78 Harrar DB, Benedetti GM, Jayakar A. et al; International Pediatric Stroke Study Group and Pediatric Neurocritical Care Research Group. Pediatric acute stroke protocols in the United States and Canada. J Pediatr 2022; 242: 220-227.e7
  • 79 Amlie-Lefond C, Shaw DWW, Cooper A. et al. Risk of intracranial hemorrhage following intravenous tPA (tissue-type plasminogen activator) for acute stroke is low in children. Stroke 2020; 51 (02) 542-548
  • 80 Sporns PB, Sträter R, Minnerup J. et al. Feasibility, safety, and outcome of endovascular recanalization in childhood stroke: the Save ChildS Study. JAMA Neurol 2020; 77 (01) 25-34
  • 81 Dicpinigaitis AJ, Gandhi CD, Pisapia J. et al. Endovascular thrombectomy for pediatric acute ischemic stroke. Stroke 2022; 53 (05) 1530-1539
  • 82 Bhatia K, Kortman H, Blair C. et al. Mechanical thrombectomy in pediatric stroke: systematic review, individual patient data meta-analysis, and case series. J Neurosurg Pediatr 2019; 1-14
  • 83 Sun LR, Lynch JK. Advances in the diagnosis and treatment of pediatric arterial ischemic stroke. Neurotherapeutics 2023; 20 (03) 633-654
  • 84 Connor P, Sánchez van Kammen M, Lensing AWA. et al. Safety and efficacy of rivaroxaban in pediatric cerebral venous thrombosis (EINSTEIN-Jr CVT). Blood Adv 2020; 4 (24) 6250-6258
  • 85 Goldenberg NA, Kittelson JM, Abshire TC. et al; Kids-DOTT Trial Investigators and the ATLAS Group. Effect of anticoagulant therapy for 6 weeks vs 3 months on recurrence and bleeding events in patients younger than 21 years of age with provoked venous thromboembolism: the Kids-DOTT randomized clinical trial. JAMA 2022; 327 (02) 129-137
  • 86 Banwell B, Bennett JL, Marignier R. et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol 2023; 22 (03) 268-282
  • 87 Bruijstens AL, Lechner C, Flet-Berliac L. et al; E.U. Paediatric MOG Consortium. E.U. paediatric MOG consortium consensus: Part 1 - Classification of clinical phenotypes of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. Eur J Paediatr Neurol 2020; 29: 2-13
  • 88 Baumann M, Bartels F, Finke C, Adamsbaum C, Hacohen Y, Rostásy K. E.U. Paediatric MOG Consortium. E.U. Paediatric MOG Consortium Consensus: Part 2 - Neuroimaging features of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. Eur J Paediatr Neurol 2020; 29: 14-21
  • 89 van Doorn PA, Van den Bergh PYK, Hadden RDM. et al. European Academy of Neurology/Peripheral Nerve Society Guideline on diagnosis and treatment of Guillain-Barré syndrome. Eur J Neurol 2023; 30 (12) 3646-3674
  • 90 Korinthenberg R, Trollmann R, Felderhoff-Müser U. et al. Diagnosis and treatment of Guillain-Barré syndrome in childhood and adolescence: an evidence- and consensus-based guideline. Eur J Paediatr Neurol 2020; 25: 5-16
  • 91 Murphy OC, Messacar K, Benson L. et al; AFM Working Group. Acute flaccid myelitis: cause, diagnosis, and management. Lancet 2021; 397 (10271): 334-346
  • 92 Jarius S, Aktas O, Ayzenberg I. et al; Neuromyelitis Optica Study Group (NEMOS). Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis. J Neurol 2023; 270 (07) 3341-3368
  • 93 Kümpfel T, Giglhuber K, Aktas O. et al; Neuromyelitis Optica Study Group (NEMOS). Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: Attack therapy and long-term management. J Neurol 2024; 271 (01) 141-176
  • 94 Roodbol J, Korinthenberg R, Venema E. et al; Working Group GBS in Children in Germany, Austria and Switzerland and the Dutch Pediatric GBS Study Group. Predicting respiratory failure and outcome in pediatric Guillain-Barré syndrome. Eur J Paediatr Neurol 2023; 44: 18-24
  • 95 Randhawa MS, Iyer R, Bansal A. et al. Clinical features associated with need for mechanical ventilation in children with Guillain-Barré syndrome: retrospective cohort from India. Pediatr Crit Care Med 2022; 23 (05) 378-382
  • 96 Khoshnood MM, Santoro JD. Myelin oligodendrocyte glycoprotein (MOG) associated diseases: updates in pediatric practice. Semin Pediatr Neurol 2023; 46: 101056
  • 97 Kannan V, Sandweiss AJ, Erickson TA. et al. Fulminant anti-myelin oligodendrocyte glycoprotein-associated cerebral cortical encephalitis: case series of a severe pediatric myelin oligodendrocyte glycoprotein antibody-associated disease phenotype. Pediatr Neurol 2023; 147: 36-43
  • 98 Hacohen Y, Banwell B. Treatment approaches for MOG-Ab-associated demyelination in children. Curr Treat Options Neurol 2019; 21 (01) 2
  • 99 Gordon-Lipkin E, Muñoz LS, Klein JL, Dean J, Izbudak I, Pardo CA. Comparative quantitative clinical, neuroimaging, and functional profiles in children with acute flaccid myelitis at acute and convalescent stages of disease. Dev Med Child Neurol 2019; 61 (03) 366-375
  • 100 McLaren N, Lopez A, Kidd S. et al. Characteristics of patients with acute flaccid myelitis, United States, 2015-2018. Emerg Infect Dis 2020; 26 (02) 212-219
  • 101 Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6 (01) 85
  • 102 Wingerchuk DM, Banwell B, Bennett JL. et al; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (02) 177-189
  • 103 Lazaridis C. Cerebral oxidative metabolism failure in traumatic brain injury: “brain shock”. J Crit Care 2017; 37: 230-233
  • 104 Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol 2018; 16 (08) 1224-1238
  • 105 Kirschen MP, Snyder M, Winters M. et al. Survey of bedside clinical neurologic assessments in U.S. PICUs. Pediatr Crit Care Med 2018; 19 (04) 339-344
  • 106 Lovett ME, MacDonald JM, Mir M, Ghosh S, O'Brien NF, LaRovere KL. Noninvasive neuromonitoring modalities in children; Part I: Pupillometry, near-infrared spectroscopy, and transcranial Doppler ultrasonography. Neurocrit Care 2024; 40 (01) 130-146
  • 107 Benedetti GM, Guerriero RM, Press CA. Review of noninvasive neuromonitoring modalities in children II: EEG, qEEG. Neurocrit Care 2023; 39 (03) 618-638
  • 108 Lang SS, Rahman R, Kumar N. et al. Invasive neuromonitoring modalities in the pediatric population. Neurocrit Care 2023; 38 (02) 470-485
  • 109 Meeker M, Du R, Bacchetti P. et al. Pupil examination: validity and clinical utility of an automated pupillometer. J Neurosci Nurs 2005; 37 (01) 34-40
  • 110 Couret D, Boumaza D, Grisotto C. et al. Reliability of standard pupillometry practice in neurocritical care: an observational, double-blinded study. Crit Care 2016; 20: 99
  • 111 Zafar SF, Suarez JI. Automated pupillometer for monitoring the critically ill patient: a critical appraisal. J Crit Care 2014; 29 (04) 599-603
  • 112 Greer DM, Shemie SD, Lewis A. et al. Determination of brain death/death by neurologic criteria: the World Brain Death Project. JAMA 2020; 324 (11) 1078-1097
  • 113 Nolan JP, Sandroni C, Böttiger BW. et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021; 47 (04) 369-421
  • 114 Rajajee V, Muehlschlegel S, Wartenberg KE. et al. Guidelines for neuroprognostication in comatose adult survivors of cardiac arrest. Neurocrit Care 2023; 38 (03) 533-563
  • 115 Bower MM, Sweidan AJ, Xu JC, Stern-Neze S, Yu W, Groysman LI. Quantitative pupillometry in the intensive care unit. J Intensive Care Med 2021; 36 (04) 383-391
  • 116 Papangelou A, Zink EK, Chang WW. et al. Automated pupillometry and detection of clinical transtentorial brain herniation: a case series. Mil Med 2018; 183 (1-2): e113-e121
  • 117 Jahns FP, Miroz JP, Messerer M. et al. Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. Crit Care 2019; 23 (01) 155
  • 118 Paramanathan S, Grejs AM, Søreide E. et al. Quantitative pupillometry in comatose out-of-hospital cardiac arrest patients: a post-hoc analysis of the TTH48 trial. Acta Anaesthesiol Scand 2022; 66 (07) 880-886
  • 119 Oddo M, Sandroni C, Citerio G. et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study. Intensive Care Med 2018; 44 (12) 2102-2111
  • 120 Warren A, McCarthy C, Andiapen M. et al. Early quantitative infrared pupillometry for prediction of neurological outcome in patients admitted to intensive care after out-of-hospital cardiac arrest. Br J Anaesth 2022; 128 (05) 849-856
  • 121 Oddo M, Taccone FS, Petrosino M. et al; ORANGE Study Investigators. The Neurological Pupil index for outcome prognostication in people with acute brain injury (ORANGE): a prospective, observational, multicentre cohort study. Lancet Neurol 2023; 22 (10) 925-933
  • 122 Freeman AD, McCracken CE, Stockwell JA. Automated pupillary measurements inversely correlate with increased intracranial pressure in pediatric patients with acute brain injury or encephalopathy. Pediatr Crit Care Med 2020; 21 (08) 753-759
  • 123 Kochanek PM, Tasker RC, Carney N. et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the Brain Trauma Foundation Guidelines. Pediatr Crit Care Med 2019; 20 (3S, suppl 1): S1-S82
  • 124 Güiza F, Depreitere B, Piper I. et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med 2015; 41 (06) 1067-1076
  • 125 Åkerlund CA, Donnelly J, Zeiler FA. et al; CENTER-TBI High Resolution ICU Sub-Study Participants and Investigators. Impact of duration and magnitude of raised intracranial pressure on outcome after severe traumatic brain injury: a CENTER-TBI high-resolution group study. PLoS One 2020; 15 (12) e0243427
  • 126 Godoy DA, Núñez-Patiño RA, Zorrilla-Vaca A, Ziai WC, Hemphill III JC. Intracranial hypertension after spontaneous intracerebral hemorrhage: a systematic review and meta-analysis of prevalence and mortality rate. Neurocrit Care 2019; 31 (01) 176-187
  • 127 Woods KS, Horvat CM, Kantawala S. et al. Intracranial and cerebral perfusion pressure thresholds associated with inhospital mortality across pediatric neurocritical care. Pediatr Crit Care Med 2021; 22 (02) 135-146
  • 128 Chambers IR, Jones PA, Lo TYM. et al. Critical thresholds of intracranial pressure and cerebral perfusion pressure related to age in paediatric head injury. J Neurol Neurosurg Psychiatry 2006; 77 (02) 234-240
  • 129 Chambers IR, Jones PA, Minns RA. et al. Which paediatric head injured patients might benefit from decompression? Thresholds of ICP and CPP in the first six hours. Acta Neurochir Suppl (Wien) 2005; 95: 21-23
  • 130 Allen BB, Chiu YL, Gerber LM, Ghajar J, Greenfield JP. Age-specific cerebral perfusion pressure thresholds and survival in children and adolescents with severe traumatic brain injury*. Pediatr Crit Care Med 2014; 15 (01) 62-70
  • 131 Udomphorn Y, Armstead WM, Vavilala MS. Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatr Neurol 2008; 38 (04) 225-234
  • 132 Svedung Wettervik T, Velle F, Hånell A. et al. ICP, PRx, CPP, and ∆CPPopt in pediatric traumatic brain injury: the combined effect of insult intensity and duration on outcome. Childs Nerv Syst 2023; 39 (09) 2459-2466
  • 133 Carra G, Elli F, Ianosi B. et al. Association of dose of intracranial hypertension with outcome in subarachnoid hemorrhage. Neurocrit Care 2021; 34 (03) 722-730
  • 134 Figaji AA, Zwane E, Fieggen AG. et al. Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg Pediatr 2009; 4 (05) 420-428
  • 135 Vavilala MS, Tontisirin N, Udomphorn Y. et al. Hemispheric differences in cerebral autoregulation in children with moderate and severe traumatic brain injury. Neurocrit Care 2008; 9 (01) 45-54
  • 136 Zipfel J, Hegele D, Hockel K. et al. Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury. Childs Nerv Syst 2022; 38 (09) 1717-1726
  • 137 Ameloot K, Genbrugge C, Meex I. et al. An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: time to drop ‘one-size-fits-all’ hemodynamic targets?. Resuscitation 2015; 90: 121-126
  • 138 Sekhon MS, Gooderham P, Menon DK. et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest. Crit Care Med 2019; 47 (07) 960-969
  • 139 Flechet M, Meyfroidt G, Piper I. et al. Visualizing cerebrovascular autoregulation insults and their association with outcome in adult and paediatric traumatic brain injury. Acta Neurochir Suppl (Wien) 2018; 126: 291-295
  • 140 Smith CA, Rohlwink UK, Mauff K. et al. Cerebrovascular pressure reactivity has a strong and independent association with outcome in children with severe traumatic brain injury. Crit Care Med 2023; 51 (05) 573-583
  • 141 Velle F, Lewén A, Howells T, Hånell A, Nilsson P, Enblad P. Cerebral pressure autoregulation and optimal cerebral perfusion pressure during neurocritical care of children with traumatic brain injury. J Neurosurg Pediatr 2023; 31 (05) 503-513
  • 142 Donnelly JE, Young AMH, Brady K. Autoregulation in paediatric TBI-current evidence and implications for treatment. Childs Nerv Syst 2017; 33 (10) 1735-1744
  • 143 Appavu B, Temkit M, Foldes S. et al. Association of outcomes with model-based indices of cerebral autoregulation after pediatric traumatic brain injury. Neurocrit Care 2021; 35 (03) 640-650
  • 144 Depreitere B, Citerio G, Smith M. et al. Cerebrovascular autoregulation monitoring in the management of adult severe traumatic brain injury: a Delphi consensus of clinicians. Neurocrit Care 2021; 34 (03) 731-738
  • 145 Zeiler FA, Beqiri E, Cabeleira M. et al; Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) High-Resolution ICU (HR ICU) Sub-Study Participants and Investigators. Brain tissue oxygen and cerebrovascular reactivity in traumatic brain injury: a collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Exploratory Analysis of Insult Burden. J Neurotrauma 2020; 37 (17) 1854-1863
  • 146 Zeiler FA, Ercole A, Beqiri E. et al; CENTER-TBI High Resolution ICU (HR ICU) Sub-Study Participants and Investigators. Association between cerebrovascular reactivity monitoring and mortality is preserved when adjusting for baseline admission characteristics in adult traumatic brain injury: a CENTER-TBI study. J Neurotrauma 2020; 37 (10) 1233-1241
  • 147 Balu R, Rajagopalan S, Baghshomali S. et al. Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury. Resuscitation 2021; 164: 114-121
  • 148 Howells T, Elf K, Jones PA. et al. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg 2005; 102 (02) 311-317
  • 149 Güiza F, Meyfroidt G, Lo TYM, Jones PA, Van den Berghe G, Depreitere B. Continuous optimal CPP based on minute-by-minute monitoring data: a study of a pediatric population. Acta Neurochir Suppl (Wien) 2016; 122: 187-191
  • 150 Svedung Wettervik T, Howells T, Enblad P, Lewén A. Temporal neurophysiological dynamics in traumatic brain injury: role of pressure reactivity and optimal cerebral perfusion pressure for predicting outcome. J Neurotrauma 2019; 36 (11) 1818-1827
  • 151 Needham E, McFadyen C, Newcombe V, Synnot AJ, Czosnyka M, Menon D. Cerebral perfusion pressure targets individualized to pressure-reactivity index in moderate to severe traumatic brain injury: a systematic review. J Neurotrauma 2017; 34 (05) 963-970
  • 152 Kramer AH, Couillard PL, Zygun DA, Aries MJ, Gallagher CN. Continuous assessment of “optimal” cerebral perfusion pressure in traumatic brain injury: a cohort study of feasibility, reliability, and relation to outcome. Neurocrit Care 2019; 30 (01) 51-61
  • 153 Tas J, Beqiri E, van Kaam RC. et al. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): a feasibility randomized controlled clinical trial. J Neurotrauma 2021; 38 (20) 2790-2800
  • 154 Hirsch LJ, Fong MWK, Leitinger M. et al. American Clinical Neurophysiology Society's Standardized Critical Care EEG Terminology: 2021 Version. J Clin Neurophysiol 2021; 38 (01) 1-29
  • 155 Greenberg SM, Ziai WC, Cordonnier C. et al. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke 2022 ;53(7)
  • 156 Jha RM, Elmer J, Zusman BE. et al. Intracranial pressure trajectories: a novel approach to informing severe traumatic brain injury phenotypes. Crit Care Med 2018; 46 (11) 1792-1802
  • 157 Jha RM, Kochanek PM. A precision medicine approach to cerebral edema and intracranial hypertension after severe traumatic brain injury: Quo Vadis?. Curr Neurol Neurosci Rep 2018; 18 (12) 105
  • 158 Wolf MS, Rakkar J, Horvat CM. et al. Assessment of dynamic intracranial compliance in children with severe traumatic brain injury: proof-of-concept. Neurocrit Care 2021; 34 (01) 209-217
  • 159 Uryga A, Ziółkowski A, Kazimierska A. et al; CENTER-TBI High-Resolution ICU (HR ICU) Sub-Study Participants and Investigators, CENTER-TBI High-Resolution Sub-Study Participants and Investigators. Analysis of intracranial pressure pulse waveform in traumatic brain injury patients: a CENTER-TBI study. J Neurosurg 2022; 139 (01) 201-211
  • 160 Vitt JR, Loper NE, Mainali S. Multimodal and autoregulation monitoring in the neurointensive care unit. Front Neurol 2023; 14: 1155986
  • 161 Lele AV, Vavilala MS. Cerebral autoregulation-guided management of adult and pediatric traumatic brain injury. J Neurosurg Anesthesiol 2023; 35 (04) 354-360
  • 162 Kunapaisal T, Vavilala MS, Moore A, Theard MA, Lele AV. Critical care experience with clinical cerebral autoregulation testing in adults with traumatic brain injury. Cureus 2023; 15 (08) e43451
  • 163 Kunapaisal T, Moore A, Theard MA. et al. Experience with clinical cerebral autoregulation testing in children hospitalized with traumatic brain injury: translating research to bedside. Front Pediatr 2023; 10: 1072851
  • 164 Cannata G, Pezzato S, Esposito S, Moscatelli A. Optic nerve sheath diameter ultrasound: a non-invasive approach to evaluate increased intracranial pressure in critically ill pediatric patients. Diagnostics (Basel) 2022; 12 (03) 767
  • 165 Kurth CD, McCann JC, Wu J, Miles L, Loepke AW. Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets. Anesth Analg 2009; 108 (04) 1268-1277
  • 166 Edmonds Jr HL, Ganzel BL, Austin III EH. Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth 2004; 8 (02) 147-166
  • 167 Chen S, Fang F, Liu W, Liu C, Xu F. Cerebral tissue regional oxygen saturation as a valuable monitoring parameter in pediatric patients undergoing extracorporeal membrane oxygenation. Front Pediatr 2021; 9: 669683
  • 168 Tsou PY, Garcia AV, Yiu A, Vaidya DM, Bembea MM. Association of cerebral oximetry with outcomes after extracorporeal membrane oxygenation. Neurocrit Care 2020; 33 (02) 429-437
  • 169 Clair MP, Rambaud J, Flahault A. et al. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation. PLoS One 2017; 12 (03) e0172991
  • 170 Vedrenne-Cloquet M, Lévy R, Chareyre J. et al. Association of cerebral oxymetry with short-term outcome in critically ill children undergoing extracorporeal membrane oxygenation. Neurocrit Care 2021; 35 (02) 409-417
  • 171 Pandiyan P, Cvetkovic M, Antonini MV, Shappley RKH, Karmakar SA, Raman L. Clinical guidelines for routine neuromonitoring in neonatal and pediatric patients supported on extracorporeal membrane oxygenation. ASAIO J 2023; 69 (10) 895-900
  • 172 Massey SL, Weinerman B, Naim MY. Perioperative neuromonitoring in children with congenital heart disease. Neurocrit Care 2024; 40 (01) 116-129
  • 173 Flechet M, Güiza F, Vlasselaers D. et al. Near-infrared cerebral oximetry to predict outcome after pediatric cardiac surgery: a prospective observational study. Pediatr Crit Care Med 2018; 19 (05) 433-441
  • 174 Hoffman GM, Ghanayem NS, Scott JP, Tweddell JS, Mitchell ME, Mussatto KA. Postoperative cerebral and somatic near-infrared spectroscopy saturations and outcome in hypoplastic left heart syndrome. Ann Thorac Surg 2017; 103 (05) 1527-1535
  • 175 Spaeder MC, Klugman D, Skurow-Todd K, Glass P, Jonas RA, Donofrio MT. Perioperative near-infrared spectroscopy monitoring in neonates with congenital heart disease: relationship of cerebral tissue oxygenation index variability with neurodevelopmental outcome. Pediatr Crit Care Med 2017; 18 (03) 213-218
  • 176 Thiele RH, Shaw AD, Bartels K. et al; Perioperative Quality Initiative (POQI) 6 Workgroup. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on the role of neuromonitoring in perioperative outcomes: cerebral near-infrared spectroscopy. Anesth Analg 2020; 131 (05) 1444-1455
  • 177 Zuluaga MT, Esch ME, Cvijanovich NZ, Gupta N, McQuillen PS. Diagnosis influences response of cerebral near infrared spectroscopy to intracranial hypertension in children. Pediatr Crit Care Med 2010; 11 (04) 514-522
  • 178 Francoeur C, Landis WP, Winters M. et al. Near-infrared spectroscopy during cardiopulmonary resuscitation for pediatric cardiac arrest: a prospective, observational study. Resuscitation 2022; 174: 35-41
  • 179 Kirschen MP, Majmudar T, Beaulieu F. et al. Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest. Resuscitation 2021; 168: 110-118
  • 180 Lazaridis C, Foreman B. Management strategies based on multi-modality neuromonitoring in severe traumatic brain injury. Neurother J Am Soc Exp Neurother 2023; 20 (06) 1457-1471
  • 181 Hoiland RL, Robba C, Menon DK, Citerio G, Sandroni C, Sekhon MS. Clinical targeting of the cerebral oxygen cascade to improve brain oxygenation in patients with hypoxic-ischaemic brain injury after cardiac arrest. Intensive Care Med 2023; 49 (09) 1062-1078
  • 182 Rosenthal G, Hemphill III JC, Sorani M. et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 2008; 36 (06) 1917-1924
  • 183 Veenith TV, Carter EL, Geeraerts T. et al. Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury. JAMA Neurol 2016; 73 (05) 542-550
  • 184 Doppenberg EM, Zauner A, Watson JC, Bullock R. Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl (Wien) 1998; 71: 166-169
  • 185 Schrieff-Elson LE, Thomas KGF, Rohlwink UK, Figaji AA. Low brain oxygenation and differences in neuropsychological outcomes following severe pediatric TBI. Childs Nerv Syst 2015; 31 (12) 2257-2268
  • 186 Lang SS, Kumar NK, Zhao C. et al. Invasive brain tissue oxygen and intracranial pressure (ICP) monitoring versus ICP-only monitoring in pediatric severe traumatic brain injury. J Neurosurg Pediatr 2022; 1-11
  • 187 Rakkar J, Azar J, Pelletier JH. et al. Temporal patterns in brain tissue and systemic oxygenation associated with mortality after severe traumatic brain injury in children. Neurocrit Care 2023; 38 (01) 71-84
  • 188 Svedung Wettervik T, Beqiri E, Bögli SY. et al. Brain tissue oxygen monitoring in traumatic brain injury: part I-To what extent does PbtO2 reflect global cerebral physiology?. Crit Care 2023; 27 (01) 339
  • 189 Lang SS, Kumar N, Zhao C. et al. Intracranial pressure and brain tissue oxygen multimodality neuromonitoring in gunshot wounds to the head in children. World Neurosurg 2023; 178: 101-113
  • 190 Østergaard L, Engedal TS, Aamand R. et al. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab 2014; 34 (10) 1585-1598
  • 191 Gouvêa Bogossian E, Diosdado A, Barrit S. et al. The impact of invasive brain oxygen pressure guided therapy on the outcome of patients with traumatic brain injury: a systematic review and meta-analysis. Neurocrit Care 2022; 37 (03) 779-789
  • 192 Okonkwo DO, Shutter LA, Moore C. et al. Brain Tissue Oxygen Monitoring and Management in Severe Traumatic Brain Injury (BOOST-II): a Phase II Randomized Trial. Crit Care Med 2017; 45 (11) 1907-1914
  • 193 Totapally A, Fretz EA, Wolf MS. A narrative review of neuromonitoring modalities in critically ill children. Minerva Pediatr (Torino) 2023 (e-pub ahead of print) DOI: 10.23736/S2724-5276.23.07291-9.
  • 194 Bernal NP, Hoffman GM, Ghanayem NS, Arca MJ. Cerebral and somatic near-infrared spectroscopy in normal newborns. J Pediatr Surg 2010; 45 (06) 1306-1310
  • 195 Zaleski KL, Kussman BD. Near-infrared spectroscopy in pediatric congenital heart disease. J Cardiothorac Vasc Anesth 2020; 34 (02) 489-500
  • 196 Spaeder MC, Keller JM, Sawda CN. et al. Implementation of a regional oxygen saturation thought algorithm and association with clinical outcomes in pediatric patients following cardiac surgery. Pediatr Cardiol 2023; 44 (04) 940-945
  • 197 Hansen ML, Hyttel-Sørensen S, Jakobsen JC. et al. European Society for Paediatric Research Special Interest Group ‘NearInfraRed Spectroscopy’ (NIRS). Cerebral near-infrared spectroscopy monitoring (NIRS) in children and adults: a systematic review with meta-analysis. Pediatr Res 2022; (e-pub ahead of print). DOI: 10.1038/s41390-022-01995-z.
  • 198 Herman ST, Abend NS, Bleck TP. et al; Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society. Consensus statement on continuous EEG in critically ill adults and children, Part I: indications. J Clin Neurophysiol 2015; 32 (02) 87-95
  • 199 Topjian AA, Raymond TT, Atkins D. et al; Pediatric Basic and Advanced Life Support Collaborators. Part 4: Pediatric Basic and Advanced Life Support 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2021; 147 (Suppl. 01) e2020038505D
  • 200 Fung FW, Wang Z, Parikh DS. et al. Electrographic seizures and outcome in critically ill children. Neurology 2021; 96 (22) e2749-e2760
  • 201 Fung FW, Fan J, Vala L. et al. EEG monitoring duration to identify electroencephalographic seizures in critically ill children. Neurology 2020; 95 (11) e1599-e1608
  • 202 Fung FW, Parikh DS, Donnelly M. et al. EEG monitoring in critically ill children: establishing high-yield subgroups. J Clin Neurophysiol 2023
  • 203 Fung FW, Fan J, Parikh DS. et al Validation of a model for targeted EEG monitoring duration in critically ill children. J Clin Neurophysiol 2023; Nov 1; 40 (07) 589-599
  • 204 Benedetti GM, Morgan LA, Sansevere AJ. et al; Pediatric Quantitative EEG Strategic Taskforce (PedQuEST). The spectrum of quantitative EEG utilization across North America: a cross-sectional survey. Pediatr Neurol 2023; 141: 1-8
  • 205 Topjian AA, Fry M, Jawad AF. et al. Detection of electrographic seizures by critical care providers using color density spectral array after cardiac arrest is feasible. Pediatr Crit Care Med 2015; 16 (05) 461-467
  • 206 Du Pont-Thibodeau G, Sanchez SM, Jawad AF. et al. Seizure detection by critical care providers using amplitude-integrated electroencephalography and color density spectral array in pediatric cardiac arrest patients. Pediatr Crit Care Med 2017; 18 (04) 363-369
  • 207 Rowberry T, Kanthimathinathan HK, George F. et al. Implementation and early evaluation of a quantitative electroencephalography program for seizure detection in the PICU. Pediatr Crit Care Med 2020; 21 (06) 543-549
  • 208 MacDarby LJ, Byrne LK, O'Brien ET, Curley GF, Healy M, McHugh JC. Amplitude integrated electroencephalography: simulated assessment of neonatal seizure detection in PICU patients. Pediatr Crit Care Med 2023; 24 (12) e627-e634
  • 209 Swarnalingam ES, RamachandranNair R, Choong KLM, Jones KC. Non-neurophysiologist physicians and nurses can detect subclinical seizures in children using a panel of quantitative EEG trends and a seizure detection algorithm. J Clin Neurophysiol 2022; 39 (06) 453-458
  • 210 Herman ST, Abend NS, Bleck TP. et al; Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol 2015; 32 (02) 96-108
  • 211 Alsallom F, Casassa C, Akkineni K, Lin L. Early detection of cerebral herniation by continuous electroencephalography and quantitative analysis. Clin EEG Neurosci 2022; 53 (02) 133-137
  • 212 Munjal NK, Bergman I, Scheuer ML, Genovese CR, Simon DW, Patterson CM. Quantitative electroencephalography (EEG) predicting acute neurologic deterioration in the pediatric intensive care unit: a case series. J Child Neurol 2022; 37 (01) 73-79
  • 213 Sansevere AJ, DiBacco ML, Pearl PL, Rotenberg A. Quantitative electroencephalography for early detection of elevated intracranial pressure in critically ill children: case series and proposed protocol. J Child Neurol 2022; 37 (01) 5-11
  • 214 Appavu BL, Temkit MH, Foldes ST. et al. Quantitative electroencephalography after pediatric anterior circulation stroke. J Clin Neurophysiol 2022; 39 (07) 610-615
  • 215 Appavu BL, Temkit MH, Hanalioglu D, Burrows BT, Adelson PD. Quantitative electroencephalographic changes associated with brain tissue hypoxia after pediatric traumatic brain injury: a retrospective exploratory analysis. J Clin Neurophysiol 2024; 41 (03) 214-220
  • 216 Zhao G, Feng G, Zhao L. et al. Application of quantitative electroencephalography in predicting early cerebral ischemia in patients undergoing carotid endarterectomy. Front Neurol 2023; 14: 1159788
  • 217 Agrawal S, Abecasis F, Jalloh I. Neuromonitoring in children with traumatic brain injury. Neurocrit Care 2024; 40 (01) 147-158
  • 218 Greer DM, Kirschen MP, Lewis A. et al. Pediatric and adult brain death/death by Neurologic Criteria Consensus Guideline. Neurology 2023; 101 (24) 1112-1132
  • 219 Poletto E, Kanthimathinathan HK, Gyorgyi Z. How to perform and interpret a middle cerebral artery transcranial Doppler examination in children at risk of brain injury. Arch Dis Child Educ Pract Ed 2024; 109 (02) 98-104
  • 220 Robba C, Poole D, Citerio G, Taccone FS, Rasulo FA. Consensus on brain ultrasonography in critical care group. Brain ultrasonography consensus on skill recommendations and competence levels within the critical care setting. Neurocrit Care 2020; 32 (02) 502-511
  • 221 Robba C, Wong A, Poole D. et al; European Society of Intensive Care Medicine task force for critical care ultrasonography*. Basic ultrasound head-to-toe skills for intensivists in the general and neuro intensive care unit population: consensus and expert recommendations of the European Society of Intensive Care Medicine. Intensive Care Med 2021; 47 (12) 1347-1367
  • 222 Lau VI, Jaidka A, Wiskar K. et al. Better with ultrasound: transcranial Doppler. Chest 2020; 157 (01) 142-150
  • 223 Rasulo FA, Calza S, Robba C. et al. Transcranial Doppler as a screening test to exclude intracranial hypertension in brain-injured patients: the IMPRESSIT-2 prospective multicenter international study. Crit Care 2022; 26 (01) 110
  • 224 Abecasis F, Cardim D, Czosnyka M, Robba C, Agrawal S. Transcranial Doppler as a non-invasive method to estimate cerebral perfusion pressure in children with severe traumatic brain injury. Childs Nerv Syst 2020; 36 (01) 125-131
  • 225 O'Brien NF, Lovett ME, Chung M, Maa T. Non-invasive estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography in children with severe traumatic brain injury. Childs Nerv Syst 2020; 36 (09) 2063-2071
  • 226 Fanelli A, Vonberg FW, LaRovere KL. et al. Fully automated, real-time, calibration-free, continuous noninvasive estimation of intracranial pressure in children. J Neurosurg Pediatr 2019; 1-11
  • 227 O'Brien NF, Maa T, Reuter-Rice K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury. J Neurosurg Pediatr 2015; 16 (04) 420-425
  • 228 Cvetkovic M, Chiarini G, Belliato M. et al. International survey of neuromonitoring and neurodevelopmental outcome in children and adults supported on extracorporeal membrane oxygenation in Europe. Perfusion 2023; 38 (02) 245-260
  • 229 Shi X, Gu Q, Li Y. et al. A standardized multimodal neurological monitoring protocol-guided cerebral protection therapy for venoarterial extracorporeal membrane oxygenation supported patients. Front Med (Lausanne) 2022; 9: 922355
  • 230 Ong CS, Etchill E, Dong J. et al. Neuromonitoring detects brain injury in patients receiving extracorporeal membrane oxygenation support. J Thorac Cardiovasc Surg 2023; 165 (06) 2104-2110.e1
  • 231 Tazarourte K, Atchabahian A, Tourtier JP. et al. Pre-hospital transcranial Doppler in severe traumatic brain injury: a pilot study. Acta Anaesthesiol Scand 2011; 55 (04) 422-428
  • 232 Tamagnone FM, Cheong I, Luna E, Previgliano I, Otero Castro V. Ultrasound-guided cerebral resuscitation in patients with severe traumatic brain Injury. J Clin Monit Comput 2023; 37 (02) 359-363
  • 233 Lin JJ, Kuo HC, Hsia SH. et al. The utility of a point-of-care transcranial Doppler ultrasound management algorithm on outcomes in pediatric asphyxial out-of-hospital cardiac arrest - an exploratory investigation. Front Med (Lausanne) 2022; 8: 690405
  • 234 Ract C, Le Moigno S, Bruder N, Vigué B. Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med 2007; 33 (04) 645-651
  • 235 O'Brien NF, Reuter-Rice K, Wainwright MS. et al. Practice recommendations for transcranial Doppler ultrasonography in critically ill children in the pediatric intensive care unit: a multidisciplinary expert consensus statement. J Pediatr Intensive Care 2021; 10 (02) 133-142
  • 236 Appavu B, Burrows BT, Foldes S, Adelson PD. Approaches to multimodality monitoring in pediatric traumatic brain injury. Front Neurol 2019; 10: 1261
  • 237 Laws JC, Jordan LC, Pagano LM, Wellons III JC, Wolf MS. Multimodal neurologic monitoring in children with acute brain injury. Pediatr Neurol 2022; 129: 62-71
  • 238 Appavu B, Burrows BT, Nickoles T. et al. Implementation of multimodality neurologic monitoring reporting in pediatric traumatic brain injury management. Neurocrit Care 2021; 35 (01) 3-15
  • 239 Topjian AA, de Caen A, Wainwright MS. et al. Pediatric post-cardiac arrest care: a scientific statement from the American Heart Association. Circulation 2019; 140 (06) e194-e233
  • 240 Chou ST, Alsawas M, Fasano RM. et al. American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Adv 2020; 4 (02) 327-355
  • 241 Meert KL, Telford R, Holubkov R. et al; Therapeutic Hypothermia after Pediatric Cardiac Arrest (THAPCA) Trial Investigators. Pediatric out-of-hospital cardiac arrest characteristics and their association with survival and neurobehavioral outcome. Pediatr Crit Care Med 2016; 17 (12) e543-e550
  • 242 Holmberg MJ, Moskowitz A, Raymond TT. et al; American Heart Association's Get With The Guidelines-Resuscitation Investigators. Derivation and internal validation of a mortality prediction tool for initial survivors of pediatric in-hospital cardiac arrest. Pediatr Crit Care Med 2018; 19 (03) 186-195
  • 243 Goto Y, Funada A, Goto Y. Duration of prehospital cardiopulmonary resuscitation and favorable neurological outcomes for pediatric out-of-hospital cardiac arrests: a nationwide, population-based cohort study. Circulation 2016; 134 (25) 2046-2059
  • 244 Berg RA, Morgan RW, Reeder RW. et al. Diastolic blood pressure threshold during pediatric cardiopulmonary resuscitation and survival outcomes: a multicenter validation study. Crit Care Med 2023; 51 (01) 91-102
  • 245 Albrecht M, de Jonge RCJ, Nadkarni VM. et al. Association between shockable rhythms and long-term outcome after pediatric out-of-hospital cardiac arrest in Rotterdam, the Netherlands: an 18-year observational study. Resuscitation 2021; 166: 110-120
  • 246 Mandel R, Martinot A, Delepoulle F. et al. Prediction of outcome after hypoxic-ischemic encephalopathy: a prospective clinical and electrophysiologic study. J Pediatr 2002; 141 (01) 45-50
  • 247 Lin JJ, Lin YJ, Hsia SH. et al. Early clinical predictors of neurological outcome in children with asphyxial out-of-hospital cardiac arrest treated with therapeutic hypothermia. Front Pediatr 2020; 7: 534
  • 248 Topjian AA, Telford R, Holubkov R. et al; Therapeutic Hypothermia after Pediatric Cardiac Arrest (THAPCA) Trial Investigators. The association of early post-resuscitation hypotension with discharge survival following targeted temperature management for pediatric in-hospital cardiac arrest. Resuscitation 2019; 141: 24-34
  • 249 Topjian AA, Telford R, Holubkov R. et al; Therapeutic Hypothermia After Pediatric Cardiac Arrest (THAPCA) Trial Investigators. Association of early postresuscitation hypotension with survival to discharge after targeted temperature management for pediatric out-of-hospital cardiac arrest: secondary analysis of a randomized clinical trial. JAMA Pediatr 2018; 172 (02) 143-153
  • 250 Yang D, Ha SG, Ryoo E, Choi JY, Kim HJ. Multimodal assessment using early brain CT and blood pH improve prediction of neurologic outcomes after pediatric cardiac arrest. Resuscitation 2019; 137: 7-13
  • 251 Topjian AA, Zhang B, Xiao R. et al. Multimodal monitoring including early EEG improves stratification of brain injury severity after pediatric cardiac arrest. Resuscitation 2021; 167: 282-288
  • 252 Topjian AA, Clark AE, Casper TC. et al; Pediatric Emergency Care Applied Research Network. Early lactate elevations following resuscitation from pediatric cardiac arrest are associated with increased mortality*. Pediatr Crit Care Med 2013; 14 (08) e380-e387
  • 253 Smith AE, Ganninger AP, Mian AY, Friess SH, Guerriero RM, Guilliams KP. Magnetic resonance imaging adds prognostic value to EEG after pediatric cardiac arrest. Resuscitation 2022; 173: 91-100
  • 254 Fung FW, Topjian AA, Xiao R, Abend NS. Early EEG features for outcome prediction after cardiac arrest in children. J Clin Neurophysiol 2019; 36 (05) 349-357
  • 255 Topjian AA, Sánchez SM, Shults J, Berg RA, Dlugos DJ, Abend NS. Early electroencephalographic background features predict outcomes in children resuscitated from cardiac arrest. Pediatr Crit Care Med 2016; 17 (06) 547-557
  • 256 Ducharme-Crevier L, Press CA, Kurz JE, Mills MG, Goldstein JL, Wainwright MS. Early presence of sleep spindles on electroencephalography is associated with good outcome after pediatric cardiac arrest. Pediatr Crit Care Med 2017; 18 (05) 452-460
  • 257 Starling RM, Shekdar K, Licht D, Nadkarni VM, Berg RA, Topjian AA. Early head CT findings are associated with outcomes after pediatric out-of-hospital cardiac arrest. Pediatr Crit Care Med 2015; 16 (06) 542-548
  • 258 Kirschen MP, Licht DJ, Faerber J. et al. Association of MRI brain injury with outcome after pediatric out-of-hospital cardiac arrest. Neurology 2021; 96 (05) e719-e731
  • 259 Kirschen MP, Berman JI, Liu H. et al. Association between quantitative diffusion-weighted magnetic resonance neuroimaging and outcome after pediatric cardiac arrest. Neurology 2022; 99 (23) e2615-e2626
  • 260 Fink EL, Kochanek PM, Beers SR. et al; POCCA Investigators. Assessment of brain magnetic resonance and spectroscopy imaging findings and outcomes after pediatric cardiac arrest. JAMA Netw Open 2023; 6 (06) e2320713
  • 261 Callaway CW, Donnino MW, Fink EL. et al. Part 8: Post-cardiac arrest care: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015; 132 (18, suppl 2): S465-S482
  • 262 Rubinos C, Bruzzone MJ, Viswanathan V, Figueredo L, Maciel CB, LaRoche S. Electroencephalography as a biomarker of prognosis in acute brain injury. Semin Neurol 2023; 43 (05) 675-688
  • 263 Schick A, Prekker ME, Kempainen RR. et al. Association of hypoxic ischemic brain injury on early CT after out of hospital cardiac arrest with neurologic outcome. Am J Emerg Med 2022; 54: 257-262
  • 264 Lee YY, Choi I, Lee SJ. et al. Clinical significance of gray to white matter ratio after cardiopulmonary resuscitation in children. Children (Basel) 2022; 9 (01) 36
  • 265 Yacoub M, Birchansky B, Mlynash M. et al; Revive Initiative at Stanford Children's Health. The prognostic value of quantitative diffusion-weighted MRI after pediatric cardiopulmonary arrest. Resuscitation 2019; 135: 103-109
  • 266 Bourgoin P, Barrault V, Joram N. et al. The prognostic value of early amplitude-integrated electroencephalography monitoring after pediatric cardiac arrest. Pediatr Crit Care Med 2020; 21 (03) 248-255
  • 267 Lee S, Zhao X, Davis KA, Topjian AA, Litt B, Abend NS. Quantitative EEG predicts outcomes in children after cardiac arrest. Neurology 2019; 92 (20) e2329-e2338
  • 268 Fink EL, Kochanek PM, Panigrahy A. et al; Personalizing Outcomes After Child Cardiac Arrest (POCCA) Investigators. Association of blood-based brain injury biomarker concentrations with outcomes after pediatric cardiac arrest. JAMA Netw Open 2022; 5 (09) e2230518
  • 269 Anetakis KM, Gedela S, Kochanek PM. et al. Association of EEG and blood-based brain injury biomarker accuracy to prognosticate mortality after pediatric cardiac arrest: an exploratory study. Pediatr Neurol 2022; 134: 25-30
  • 270 Centers for Disease Control and Prevention. Report to Congress: The Management of Traumatic Brain Injury in Children. 2018
  • 271 Figaji A. An update on pediatric traumatic brain injury. Childs Nerv Syst 2023; 39 (11) 3071-3081
  • 272 McCrea MA, Giacino JT, Barber J. et al; TRACK-TBI Investigators. Functional outcomes over the first year after moderate to severe traumatic brain injury in the prospective, longitudinal TRACK-TBI study. JAMA Neurol 2021; 78 (08) 982-992
  • 273 Strazzer S, Pastore V, Frigerio S. et al. Long-term vocational outcome at 15 years from severe traumatic and non-traumatic brain injury in pediatric age. Brain Sci 2023; 13 (07) 1000
  • 274 Blackwell LS, Shishido Y, Howarth R. Cognitive recovery of children and adolescents with moderate to severe TBI during inpatient rehabilitation. Disabil Rehabil 2022; 44 (07) 1035-1041
  • 275 Neumane S, Câmara-Costa H, Francillette L. et al. Functional status 1 year after severe childhood traumatic brain injury predicts 7-year outcome: results of the TGE study. Ann Phys Rehabil Med 2022; 65 (05) 101627
  • 276 Watson WD, Suskauer SJ, Askin G. et al. Cognitive recovery during inpatient rehabilitation following pediatric traumatic brain injury: a pediatric brain injury consortium study. J Head Trauma Rehabil 2021; 36 (04) 253-263
  • 277 Zarei H, Vazirizadeh-Mahabadi M, Adel Ramawad H, Sarveazad A, Yousefifard M. Prognostic value of CRASH and IMPACT models for predicting mortality and unfavorable outcome in traumatic brain injury; a systematic review and meta-analysis. Arch Acad Emerg Med 2023; 11 (01) e27
  • 278 Huth SF, Slater A, Waak M, Barlow K, Raman S. Predicting neurological recovery after traumatic brain injury in children: a systematic review of prognostic models. J Neurotrauma 2020; 37 (20) 2141-2149
  • 279 Mikkonen ED, Skrifvars MB, Reinikainen M. et al Validation of prognostic models in intensive care unit-treated pediatric traumatic brain injury patients. J Neurosurg Pediatr 2019; 24 (03) 330-337
  • 280 Figaji AA. Anatomical and physiological differences between children and adults relevant to traumatic brain injury and the implications for clinical assessment and care. Front Neurol 2017; 8: 685
  • 281 Banoei MM, Lee CH, Hutchison J. et al; Canadian Biobank, Database for Traumatic Brain Injury (CanTBI) Investigators, the Canadian Critical Care Translational Biology Group (CCCTBG), the Canadian Traumatic Brain Injury Research, Clinical Network (CTRC). Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months. Crit Care 2023; 27 (01) 295
  • 282 Munoz Pareja JC, de Rivero Vaccari JP, Chavez MM. et al. Prognostic and diagnostic utility of serum biomarkers in pediatric traumatic brain injury. J Neurotrauma 2024; 41 (1-2): 106-122
  • 283 Dennis EL, Caeyenberghs K, Hoskinson KR. et al. White matter disruption in pediatric traumatic brain injury: results from ENIGMA pediatric moderate to severe traumatic brain injury. Neurology 2021; 97 (03) e298-e309
  • 284 Xie J, Burrows BT, Fox Kensicki J, Adelson PD, Appavu B. Early electroencephalographic features predicting cerebral physiology and functional outcomes after pediatric traumatic brain injury. Neurocrit Care 2023; 38 (03) 657-666
  • 285 Balakrishnan B, VanDongen-Trimmer H, Kim I. et al. GCS-Pupil Score has a stronger association with mortality and poor functional outcome than GCS alone in pediatric severe traumatic brain injury. Pediatr Neurosurg 2021; 56 (05) 432-439
  • 286 Emami P, Czorlich P, Fritzsche FS. et al. Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: a retrospective, multicenter cohort study. J Neurosurg 2017; 126 (03) 760-767
  • 287 Fulkerson DH, White IK, Rees JM. et al. Analysis of long-term (median 10.5 years) outcomes in children presenting with traumatic brain injury and an initial Glasgow Coma Scale score of 3 or 4. J Neurosurg Pediatr 2015; 16 (04) 410-419
  • 288 Lundine JP, Koterba C, Shield C, Shi J, Hoskinson KR. Predicting outcomes 2 months and 1 year after inpatient rehabilitation for youth with TBI using duration of impaired consciousness and serial cognitive assessment. J Head Trauma Rehabil 2023; 38 (02) E99-E108
  • 289 Davis KC, Slomine BS, Salorio CF, Suskauer SJ. Time to follow commands and duration of posttraumatic amnesia predict GOS-E Peds scores 1 to 2 years after TBI in children requiring inpatient rehabilitation. J Head Trauma Rehabil 2016; 31 (02) E39-E47
  • 290 Hernández MC, Bouzas MII, Martínez de Azagra Garde A, Suárez EP, González AS, García RJ. Early prognostic factors for morbidity and mortality in severe traumatic brain injury. . Experience in a child polytrauma unit. Med Intensiva . (English edn). 2022; 46 (06) 297-304
  • 291 Chong SL, Qian S, Yao SHW. et al. Early posttraumatic seizures in pediatric traumatic brain injury: a multicenter analysis. J Neurosurg Pediatr 2021; 29 (02) 225-231
  • 292 Caliendo ET, Kim N, Edasery D. et al. Acute imaging findings predict recovery of cognitive and motor function after inpatient rehabilitation for pediatric traumatic brain injury: a pediatric brain injury consortium study. J Neurotrauma 2021; 38 (14) 1961-1968
  • 293 Goubran D, Batoo D, Linton J, Shankar J. Initial CT imaging predicts mortality in severe traumatic brain injuries in pediatric population - a systematic review and meta-analysis. Tomography 2023; 9 (02) 541-551
  • 294 Sigmund GA, Tong KA, Nickerson JP, Wall CJ, Oyoyo U, Ashwal S. Multimodality comparison of neuroimaging in pediatric traumatic brain injury. Pediatr Neurol 2007; 36 (04) 217-226
  • 295 Janas AM, Qin F, Hamilton S. et al. Diffuse axonal injury grade on early MRI is associated with worse outcome in children with moderate-severe traumatic brain injury. Neurocrit Care 2022; 36 (02) 492-503
  • 296 Smitherman E, Hernandez A, Stavinoha PL. et al. Predicting outcome after pediatric traumatic brain injury by early magnetic resonance imaging lesion location and volume. J Neurotrauma 2016; 33 (01) 35-48
  • 297 Chong SL, Ong GYK, Zheng CQ. et al. Early coagulopathy in pediatric traumatic brain injury: A Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) Retrospective Study. Neurosurgery 2021; 89 (02) 283-290
  • 298 You CY, Lu SW, Fu YQ, Xu F. Relationship between admission coagulopathy and prognosis in children with traumatic brain injury: a retrospective study. Scand J Trauma Resusc Emerg Med 2021; 29 (01) 67
  • 299 James V, Chong SL, Shetty SS, Ong GY. Early coagulopathy in children with isolated blunt head injury is associated with mortality and poor neurological outcomes. J Neurosurg Pediatr 2020; 1-7
  • 300 Yao S, Chong SL, Allen JC. et al. Early metabolic derangements and unfavorable outcomes in pediatric traumatic brain injury: a retrospective multi-center cohort study. Transl Pediatr 2023; 12 (03) 344-353
  • 301 Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17 (03) 135-156
  • 302 Giacino JT, Katz DI, Schiff ND. et al. Practice guideline update recommendations summary: Disorders of consciousness: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology 2018; 91 (10) 450-460
  • 303 Molteni E, Canas LDS, Briand MM. et al; as the Special Interest Group on DoC of the International Brain Injury Association (IBIA-DoC SIG). Scoping review on the diagnosis, prognosis, and treatment of pediatric disorders of consciousness. Neurology 2023; 101 (06) e581-e593
  • 304 Wang J, Hu X, Hu Z, Sun Z, Laureys S, Di H. The misdiagnosis of prolonged disorders of consciousness by a clinical consensus compared with repeated coma-recovery scale-revised assessment. BMC Neurol 2020; 20 (01) 343
  • 305 Frigerio S, Molteni E, Colombo K. et al. Neuropsychological assessment through Coma Recovery Scale-Revised and Coma/Near Coma Scale in a sample of pediatric patients with disorder of consciousness. J Neurol 2023; 270 (02) 1019-1029
  • 306 Boerwinkle VL, Schor NF, Slomine BS. et al. Proceedings of the First Pediatric Coma and Disorders of Consciousness Symposium by the Curing Coma Campaign, Pediatric Neurocritical Care Research Group, and NINDS: Gearing for Success in Coma Advancements for Children and Neonates. Neurocrit Care 2023; 38 (02) 447-469
  • 307 Kondziella D, Friberg CK, Frokjaer VG, Fabricius M, Møller K. Preserved consciousness in vegetative and minimal conscious states: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016; 87 (05) 485-492
  • 308 Kondziella D, Bender A, Diserens K. et al; EAN Panel on Coma, Disorders of Consciousness. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol 2020; 27 (05) 741-756