Journal of Pediatric Neurology 2024; 22(05): 366-376
DOI: 10.1055/s-0044-1786786
Review Article

Defects of Midbrain/Hindbrain Development: Defects of Anteroposterior and Dorsoventral Patterning

Arturo Biasco*
1   Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
,
Federica Dierna*
1   Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
,
Antonio Zanghì*
2   Department of General Surgery and Medical-Surgical Specialty, University of Catania, Catania, Italy
,
Michele Vecchio
3   Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
,
Raffaele Falsaperla
4   Neonatology and Neonatal Intensive Care Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
,
Elena R. Praticò
5   Unit of Pediatrics, Carpi Hospital, Carpi, Italy
,
Antonino Maniaci
6   Chair of Othorhinolaryngology, Department of Medicine and Surgery, Kore University, Enna, Italy
,
Martino Ruggieri
7   Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Agata Polizzi
8   Chair of Othorhinolaryngology, Department of Educational Sciences, University of Catania, Catania, Italy
› Author Affiliations

Abstract

The knowledge regarding the midbrain and the hindbrain (MBHB) malformations has been progressively increased in recent years, thanks to the advent of neuroimaging and genetic technologies. Many classifications have been proposed in order to well describe all of these patterns. The most complete and detailed one is based on the genetic and embryologic features that allow an easier and effective knowledge of these disturbs. It categorizes them into four primary groups: (1) Malformations resulting from early anteroposterior and dorsoventral patterning defects or the misspecification of MBHB germinal zones.(2) Malformations linked to later generalized developmental disorders that notably impact the brain stem and cerebellum, with a pathogenesis that is at least partially comprehended.(3) Localized brain malformations significantly affecting the brain stem and cerebellum, with a pathogenesis that is partly or largely understood, encompassing local proliferation, migration, and axonal guidance.(4) Combined hypoplasia and atrophy observed in presumed prenatal-onset degenerative disorders. Regarding diagnosis, brain stem malformations are typically identified during prenatal assessments, particularly when they are linked with anomalies in the cerebellum and cerebrum. Magnetic resonance imaging is the primary neuroimaging method in the evaluation of these malformations. The clinical characteristics of individuals with malformations in the midbrain or hindbrain are generally nonspecific. Common findings at presentation are hypotonia, motor retardation, ataxia, variable degree of intellectual disability, and abnormal eye movement (e.g., nystagmus, abnormal saccades, oculomotor apraxia, strabismus, and abnormal smooth pursuit). The complexity and the number of these MBHB malformations are constantly increasing. We will provide an overview of MBHB disorders, focusing on embryology, genetic, clinical, and neuroradiology features that could be helpful for clinicians and neuroscientist to understand process of these conditions.

* These authors contributed equally to this article.




Publication History

Received: 11 December 2023

Accepted: 03 April 2024

Article published online:
29 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Doherty D, Millen KJ, Barkovich AJ. Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol 2013; 12 (04) 381-393
  • 2 Barbagallo M, Ruggieri M, Incorpora G. et al. Infantile spasms in the setting of Sturge-Weber syndrome. Childs Nerv Syst 2009; 25 (01) 111-118
  • 3 Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain 2009; 132 (Pt 12): 3199-3230
  • 4 Vincent A, Jacobson L, Plested P. et al. Antibodies affecting ion channel function in acquired neuromyotonia, in seropositive and seronegative myasthenia gravis, and in antibody-mediated arthrogryposis multiplex congenita. Ann N Y Acad Sci 1998; 841: 482-496
  • 5 Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 2003; 80 (1-2): 36-53
  • 6 Leuzzi V, Mastrangelo M, Polizzi A. et al. Report of two never treated adult sisters with aromatic L-amino acid decarboxylase deficiency: a portrait of the natural history of the disease or an expanding phenotype?. JIMD Rep 2015; 15: 39-45
  • 7 Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. A developmental and genetic classification for malformations of cortical development. Neurology 2005; 65 (12) 1873-1887
  • 8 Ruggieri M, Polizzi A. From Aldrovandi's “Homuncio” (1592) to Buffon's girl (1749) and the “Wart Man” of Tilesius (1793): antique illustrations of mosaicism in neurofibromatosis?. J Med Genet 2003; 40 (03) 227-232
  • 9 Patel S, Barkovich AJ. Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol 2002; 23 (07) 1074-1087
  • 10 Ruggieri M, Praticò AD, Serra A. et al. Early history of neurofibromatosis type 2 and related forms: earliest descriptions of acoustic neuromas, medical curiosities, misconceptions, landmarks and the pioneers behind the eponyms. Childs Nerv Syst 2017; 33 (04) 549-560
  • 11 Abdel Razek AA, Castillo M. Magnetic resonance imaging of malformations of midbrain-hindbrain. J Comput Assist Tomogr 2016; 40 (01) 14-25
  • 12 Pavone P, Briuglia S, Falsaperla R. et al. Wide spectrum of congenital anomalies including choanal atresia, malformed extremities, and brain and spinal malformations in a girl with a de novo 5.6-Mb deletion of 13q12.11-13q12.13. Am J Med Genet A 2014; 164A (07) 1734-1743
  • 13 Barkovich AJ, Millen KJ, Dobyns WB. A developmental classification of malformations of the brainstem. Ann Neurol 2007; 62 (06) 625-639
  • 14 Pavone P, Praticò AD, Ruggieri M, Falsaperla R. Hypomelanosis of Ito: a round on the frequency and type of epileptic complications. Neurol Sci 2015; 36 (07) 1173-1180
  • 15 Poretti A, Boltshauser E, Plecko B. Brainstem disconnection: case report and review of the literature. Neuropediatrics 2007; 38 (04) 210-212
  • 16 Pavone P, Praticò AD, Ruggieri M. et al. Acquired peripheral neuropathy: a report on 20 children. Int J Immunopathol Pharmacol 2012; 25 (02) 513-517
  • 17 Caminero F, Cascella M. Neuroanatomy, mesencephalon midbrain. October 24, 2022. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023
  • 18 Pavone V, Signorelli SS, Praticò AD. et al. Total hemi-overgrowth in pigmentary mosaicism of the (hypomelanosis of) Ito type: eight case reports. Medicine (Baltimore) 2016; 95 (10) e2705
  • 19 Alkan O, Kizilkilic O, Yildirim T. Malformations of the midbrain and hindbrain: a retrospective study and review of the literature. Cerebellum 2009; 8 (03) 355-365
  • 20 Pratico AD, Ruggieri M, Falsaperla R, Pavone P. A probable topiramate-induced limbs paraesthesia and rigid fingers flexion. Curr Drug Saf 2018; 13 (02) 131-136
  • 21 Chambers D, Wilson LJ, Alfonsi F. et al. Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain. Neural Dev 2009; 4: 6
  • 22 Pavone P, Praticò AD, Gentile G. et al. A neurocutaneous phenotype with paired hypo- and hyperpigmented macules, microcephaly and stunted growth as prominent features. Eur J Med Genet 2016; 59 (05) 283-289
  • 23 Lim Y, Golden JA. Patterning the developing diencephalon. Brain Res Brain Res Rev 2007; 53 (01) 17-26
  • 24 Pavone P, Nigro F, Falsaperla R. et al. Hemihydranencephaly: living with half brain dysfunction. Ital J Pediatr 2013; 39: 3
  • 25 Bermingham NA, Hassan BA, Wang VY. et al. Proprioceptor pathway development is dependent on Math1. Neuron 2001; 30 (02) 411-422
  • 26 Ruggieri M, Polizzi A, Marceca GP, Catanzaro S, Praticò AD, Di Rocco C. Introduction to phacomatoses (neurocutaneous disorders) in childhood. Childs Nerv Syst 2020; 36 (10) 2229-2268
  • 27 Yamada M, Terao M, Terashima T. et al. Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci 2007; 27 (41) 10924-10934
  • 28 Incorpora G, Pavone P, Castellano-Chiodo D, Praticò AD, Ruggieri M, Pavone L. Gelastic seizures due to hypothalamic hamartoma: rapid resolution after endoscopic tumor disconnection. Neurocase 2013; 19 (05) 458-461
  • 29 Jissendi-Tchofo P, Severino M, Nguema-Edzang B, Toure C, Soto Ares G, Barkovich AJ. Update on neuroimaging phenotypes of mid-hindbrain malformations. Neuroradiology 2015; 57 (02) 113-138
  • 30 Ruggieri M, Praticò AD, Caltabiano R, Polizzi A. Rediagnosing one of Smith's patients (John McCann) with “neuromas tumours” (1849). Neurol Sci 2017; 38 (03) 493-499
  • 31 Nakamura H, Watanabe Y. Isthmus organizer and regionalization of the mesencephalon and metencephalon. Int J Dev Biol 2005; 49 (2-3): 231-235
  • 32 Palano GM, Praticò AD, Praticò ER. et al. Intossicazione accidentale da alcol etilico in un lattante di 30 giorni. Quadro clinico e follow-up neurologico. Minerva Pediatr 2007; 59 (03) 275-279
  • 33 Waters ST, Lewandoski M. A threshold requirement for Gbx2 levels in hindbrain development. Development 2006; 133 (10) 1991-2000
  • 34 Leonardi S, Praticò AD, Lionetti E, Spina M, Vitaliti G, La Rosa M. Intramuscular vs intradermal route for hepatitis B booster vaccine in celiac children. World J Gastroenterol 2012; 18 (40) 5729-5733
  • 35 Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 2005; 45 (01) 27-40
  • 36 Fiumara A, Lanzafame G, Arena A. et al. COVID-19 pandemic outbreak and its psychological impact on patients with rare lysosomal diseases. J Clin Med 2020; 9 (09) 2716
  • 37 Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 2006; 30 (06) 718-729
  • 38 Salafia S, Praticò AD, Pizzo E, Greco F, Di Bella D. Hemiconvulsion-hemiplegia-epilepsy syndrome. Magnetic resonance findings in a 3-year-old boy. Neurol Neurochir Pol 2013; 47 (06) 584-589
  • 39 Sehgal V, Delproposto Z, Haddar D. et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 2006; 24 (01) 41-51
  • 40 Praticò AD, Leonardi S. Immunotherapy for food allergies: a myth or a reality?. Immunotherapy 2015; 7 (02) 147-161
  • 41 Keser Z, Hasan KM, Mwangi BI. et al. Diffusion tensor imaging of the human cerebellar pathways and their interplay with cerebral macrostructure. Front Neuroanat 2015; 9: 41
  • 42 Ruggieri M, Polizzi A, Catanzaro S, Bianco ML, Praticò AD, Di Rocco C. Neurocutaneous melanocytosis (melanosis). Childs Nerv Syst 2020; 36 (10) 2571-2596
  • 43 Sellick GS, Barker KT, Stolte-Dijkstra I. et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 2004; 36 (12) 1301-1305
  • 44 Praticò AD, Ruggieri M. COVID-19 vaccination for children: may be necessary for the full eradication of the disease. Pediatr Res 2021; 90 (06) 1102-1103
  • 45 Hoshino M, Nakamura S, Mori K. et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 2005; 47 (02) 201-213
  • 46 Praticò AD, Mistrello G, La Rosa M. et al. Immunotherapy: a new horizon for egg allergy?. Expert Rev Clin Immunol 2014; 10 (05) 677-686
  • 47 Al-Baradie R, Yamada K, St Hilaire C. et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet 2002; 71 (05) 1195-1199
  • 48 Praticò AD, Giallongo A, Arrabito M. et al. SCN2A and its related epileptic phenotypes. Journal of Pediatric Neurology 2023; 21 (03) 173-185
  • 49 Michielse CB, Bhat M, Brady A. et al. Refinement of the locus for hereditary congenital facial palsy on chromosome 3q21 in two unrelated families and screening of positional candidate genes. Eur J Hum Genet 2006; 14 (12) 1306-1312
  • 50 Praticò AD, Falsaperla R, Comella M, Belfiore G, Polizzi A, Ruggieri M. Case report: A gain-of-function of hamartin may lead to a distinct “inverse TSC1-hamartin” phenotype characterized by reduced cell growth. Front Pediatr 2023; 11: 1101026
  • 51 Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 2005; 132 (24) 5461-5469
  • 52 Praticò AD. COVID-19 pandemic for Pediatric Health Care: disadvantages and opportunities. Pediatr Res 2021; 89 (04) 709-710
  • 53 Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 2004; 72 (05) 295-339
  • 54 Ruggieri M, Milone P, Pavone P. et al. Nevus vascularis mixtus (cutaneous vascular twin nevi) associated with intracranial vascular malformation of the Dyke-Davidoff-Masson type in two patients. Am J Med Genet A 2012; 158A (11) 2870-2880
  • 55 Kenney AM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 2003; 130 (01) 15-28
  • 56 Ruggieri M, Iannetti P, Clementi M. et al. Neurofibromatosis type 1 and infantile spasms. Childs Nerv Syst 2009; 25 (02) 211-216
  • 57 Kaindl AM, Asimiadou S, Manthey D, Hagen MV, Turski L, Ikonomidou C. Antiepileptic drugs and the developing brain. Cell Mol Life Sci 2006; 63 (04) 399-413
  • 58 Ruggieri M, Pavone V, De Luca D, Franzò A, Tiné A, Pavone L. Congenital bone malformations in patients with neurofibromatosis type 1 (Nf1). J Pediatr Orthop 1999; 19 (03) 301-305
  • 59 Takano T, Akahori S, Takeuchi Y, Ohno M. Neuronal apoptosis and gray matter heterotopia in microcephaly produced by cytosine arabinoside in mice. Brain Res 2006; 1089 (01) 55-66
  • 60 Ruggieri M, Huson SM. The neurofibromatoses. An overview. Ital J Neurol Sci 1999; 20 (02) 89-108
  • 61 Sarnat HB, Benjamin DR, Siebert JR, Kletter GB, Cheyette SR. Agenesis of the mesencephalon and metencephalon with cerebellar hypoplasia: putative mutation in the EN2 gene–report of 2 cases in early infancy. Pediatr Dev Pathol 2002; 5 (01) 54-68
  • 62 Ruggieri M. Cutis tricolor: congenital hyper- and hypopigmented lesions in a background of normal skin with and without associated systemic features: further expansion of the phenotype. Eur J Pediatr 2000; 159 (10) 745-749
  • 63 Bednarek N, Scavarda D, Mesmin F, Sabouraud P, Motte J, Morville P. Midbrain disconnection: an aetiology of severe central neonatal hypotonia. Eur J Paediatr Neurol 2005; 9 (06) 419-422
  • 64 Pratico AD, Longo L, Mansueto S. et al. Off-label use of drugs and adverse drug reactions in pediatric units: a prospective, multicenter study. Curr Drug Saf 2018; 13 (03) 200-207
  • 65 McCann E, Pilling D, Hesseling M, Roberts D, Subhedar N, Sweeney E. Pontomedullary disconnection: fetal and neonatal considerations. Pediatr Radiol 2005; 35 (08) 812-814
  • 66 Ruggieri M, Polizzi A, Pavone L, Musumeci S. Thalamic syndrome in children with measles infection and selective, reversible thalamic involvement. Pediatrics 1998; 101 (1 Pt 1): 112-119
  • 67 Duffield C, Jocson J, Wootton-Gorges SL. Brainstem disconnection. Pediatr Radiol 2009; 39 (12) 1357-1360
  • 68 Ruggieri M, Iannetti P, Pavone L. Delineation of a newly recognized neurocutaneous malformation syndrome with “cutis tricolor”. Am J Med Genet A 2003; 120A (01) 110-116
  • 69 Lumsden A. Segmentation and compartition in the early avian hindbrain. Mech Dev 2004; 121 (09) 1081-1088
  • 70 Pavone P, Praticò AD, Pavone V. et al. Ataxia in children: early recognition and clinical evaluation. Ital J Pediatr 2017; 43 (01) 6
  • 71 Cordes SP. Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2001; 2 (09) 611-623
  • 72 Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum 2016; 15 (01) 34-37
  • 73 Schneider-Maunoury S, Seitanidou T, Charnay P, Lumsden A. Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 1997; 124 (06) 1215-1226
  • 74 Bosley TM, Alorainy IA, Salih MA. et al. The clinical spectrum of homozygous HOXA1 mutations. Am J Med Genet A 2008; 146A (10) 1235-1240
  • 75 Bosley TM, Salih MA, Alorainy IA. et al. Clinical characterization of the HOXA1 syndrome BSAS variant. Neurology 2007; 69 (12) 1245-1253
  • 76 Chan WM, Traboulsi EI, Arthur B, Friedman N, Andrews C, Engle EC. Horizontal gaze palsy with progressive scoliosis can result from compound heterozygous mutations in ROBO3. J Med Genet 2006; 43 (03) e11
  • 77 Chiaramonte R, Pavone P, Vecchio M. Speech rehabilitation in dysarthria after stroke: a systematic review of the studies. Eur J Phys Rehabil Med 2020; 56 (05) 547-562
  • 78 Chiaramonte R, Vecchio M. Dysarthria and stroke. The effectiveness of speech rehabilitation. A systematic review and meta-analysis of the studies. Eur J Phys Rehabil Med 2021; 57 (01) 24-43
  • 79 Chiaramonte R, Vecchio M. A systematic review of measures of dysarthria severity in stroke patients. PM R 2021; 13 (03) 314-324
  • 80 Vecchio M, Gracies JM, Panza F. et al. Change in coefficient of fatigability following rapid, repetitive movement training in post-stroke spastic paresis: a prospective open-label observational study. J Stroke Cerebrovasc Dis 2017; 26 (11) 2536-2540
  • 81 Nakano M, Yamada K, Fain J. et al. Homozygous mutations in ARIX(PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nat Genet 2001; 29 (03) 315-320
  • 82 Zaki MS, Saleem SN, Dobyns WB. et al. Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation. Brain 2012; 135 (Pt 8): 2416-2427