Subscribe to RSS
DOI: 10.1055/s-0043-1775445
Metal-Associated Enols as Key Intermediates in Controlling Enantioselectivity in Carbene Insertion Reactions
G.J. acknowledges the research grant from the Science and Engineering Research Board (SERB) (SPG/2021/003445). D.D. thanks the Indian Institute of Science (IISc) for a fellowship. M.S.H. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for a fellowship.

Abstract
Transition-metal-catalysed asymmetric carbene insertion reactions into various X–H bonds typically suffer from poor stereoselectivity. It has been proposed that the presence of metal-free intermediates leads to erosion of selectivity. In the current account, we discuss our recent efforts to understand the mechanism and stereochemical model of Rh- and Fe-catalysed carbene insertion into indole and phenol. Our detailed DFT calculations show that all transformations adopt a common mechanism involving an enol intermediate, the further tautomerisation of which is the key stereodetermining step. To account for enantioinduction, we propose a novel metal-associated enol species that can be the key to solving the challenges in asymmetric reactions. The geometry of the metal–enol complex and the interaction between the chiral metal complex and prochiral enol play important roles in driving the reaction toward a particular stereoisomer.
1 Introduction
2 Rh-Catalysed Carbene Insertion into Indole
3 Fe-Catalysed Indole C–H Functionalisation
4 Fe-Catalysed O–H Insertion
5 Conclusion
Key words
carbene insertion - transition state modelling - density functional theory - asymmetric catalysis - metal-associated enol reactionsPublication History
Received: 19 December 2024
Accepted after revision: 17 January 2025
Article published online:
11 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
- 2 Empel C, Hock KJ, Koenigs RM. Chem. Commun. 2019; 55: 338
- 3 Griffin JR, Wendell CI, Garwin JA, White MC. J. Am. Chem. Soc. 2017; 139: 13624
- 4 Li M.-L, Yu J.-H, Li Y.-H, Zhu S.-F, Zhou Q.-L. Science 2019; 366: 990
- 5 Nair VN, Kojasoy V, Laconsay CJ, Kong WY, Tantillo DJ, Tambar UK. J. Am. Chem. Soc. 2021; 143: 9016
- 6 Balhara R, Chatterjee R, Jindal G. Chem. Soc. Rev. 2024; 53: 11004
- 7 Kaur P, Tyagi V. Adv. Synth. Catal. 2021; 363: 877
- 8 Zhu S.-F, Zhou Q.-L. Natl. Sci. Rev. 2014; 1: 580
- 9 Liu Z, Arnold FH. Curr. Opin. Biotechnol. 2021; 69: 43
- 10 Yadagiri D, Anbarasan P. Chem. Rec. 2021; 21: 3872
- 11 Squitieri RA, Shearn-Nance GP, Hein JE, Shaw JT. J. Org. Chem. 2016; 81: 5278
- 12 Chen B, Chu W.-D, Liu Q.-Z. RSC Adv. 2019; 9: 1487
- 13 DeAngelis A, Shurtleff VW, Dmitrenko O, Fox JM. J. Am. Chem. Soc. 2011; 133: 1650
- 14 Gao X, Wu B, Huang W.-X, Chen M.-W, Zhou Y.-G. Angew. Chem. Int. Ed. 2015; 54: 11956 ; Angew. Chem. 2015, 127, 12124
- 15 Gao X, Wu B, Yan Z, Zhou Y.-G. Org. Biomol. Chem. 2016; 14: 8237
- 16 Balhara R, Chatterjee R, Jindal GA. Phys. Chem. Chem. Phys. 2021; 23: 9500
- 17 Liu Y, Luo Z, Zhang JZ, Xia F. J. Phys. Chem. A 2016; 120: 6485
- 18 Liang Y, Zhou H, Yu Z.-X. J. Am. Chem. Soc. 2009; 131 (49) 17783
- 19 Liu Z, Calvó-Tusell C, Zhou AZ, Chen K, Garcia-Borràs M, Arnold FH. Nat. Chem. 2021; 13: 1166
- 20 Tan F, Liu X, Hao X, Tang Y, Lin L, Feng X. ACS Catal. 2016; 6: 6930
- 21 Davies HM. L, Manning JR. Nature 2008; 451: 417
- 22 Wei Y, Tinoco A, Steck V, Fasan R, Zhang Y. J. Am. Chem. Soc. 2018; 140: 1649
- 23 Li J, Meng X, Hu C, Su Z. J. Org. Chem. 2019; 84: 15020
- 24 Maolin L, Mengqing C, Bin X, Shoufei Z, Qilin Z. Acta Chim. Sin. 2018; 76: 883
- 25 Davies HM. L, Liao K. Nat. Rev. Chem. 2019; 3: 347
- 26 Liao K, Negretti S, Musaev DG, Bacsa J, Davies HM. L. Nature 2016; 533: 230
- 27 Laconsay CJ, Tantillo DJ. ACS Catal. 2021; 11: 829
- 28 Jana S, Empel C, Pei C, Aseeva P, Nguyen TV, Koenigs RM. ACS Catal. 2020; 10: 9925
- 29 Zhang Z, Liu Y, Gong M, Zhao X, Zhang Y, Wang J. Angew. Chem. 2010; 122: 1157
- 30 Postils V, Rodríguez M, Sabenya G, Conde A, Díaz-Requejo MM, Pérez PJ, Costas M, Solà M, Luis JM. ACS Catal. 2018; 8: 4313
- 31 Torssell S, Kienle M, Somfai P. Angew. Chem. Int. Ed. 2005; 44: 3096
- 32 Lam SK, Chiu P. Chem. Eur. J. 2007; 13: 9589
- 33 Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
- 34 Harariya MS, Gogoi R, Goswami A, Sharma AK, Jindal G. Chem. Eur. J. 2023; 29: e202301910
- 35 Xie Q, Song X.-S, Qu D, Guo L.-P, Xie Z.-Z. Organometallics 2015; 34: 3112
- 36 Zhu S.-F, Cai Y, Mao H.-X, Xie J.-H, Zhou Q.-L. Nat. Chem. 2010; 2: 546
- 37 Shen H.-Q, Wu B, Xie H.-P, Zhou Y.-G. Org. Lett. 2019; 21: 2712
- 38 Cai Y, Zhu S.-F, Wang G.-P, Zhou Q.-L. Adv. Synth. Catal. 2011; 353: 2939
- 39 Vargas DA, Tinoco A, Tyagi V, Fasan R. Angew. Chem. Int. Ed. 2018; 57: 9911
- 40 Balhara R, Jindal G. J. Org. Chem. 2022; 87: 7919
- 41 Batista VF, Pinto DC. G. A, Silva AM. S. ACS Catal. 2020; 10: 10096
- 42 Balhara R, Jindal G. Chem. Commun. 2024; 60: 10322