Subscribe to RSS
DOI: 10.1055/s-0043-1775428
Visible-Light-Induced Enantioselective Dearomative [2+2]-Cycloaddition/Ring-Expansion Sequence of Indoles with Simple Alkenes
This work was supported by the National Natural Science Foundation of China (Nos. 22188101 and 92256302).
![](https://www.thieme-connect.de/media/synlett/EFirst/lookinside/thumbnails/st-2024-k0315-sp_10-1055_s-0043-1775428-1.jpg)
Abstract
Catalytic asymmetric dearomatization reactions represent a versatile platform for constructing complex optically active three-dimensional molecules. We present a visible-light-induced asymmetric dearomative [2+2] cycloaddition/ring-expansion reaction of indole derivatives with simple alkenes in the presence of a chiral N,N′-dioxide/terbium complex. This strategy provides access to a range of valuable cyclopenta[b]indoles, and its synthetic potential is further showcased through a gram-scale synthesis, potential bioactivity against human breast cancer, and further transformation into a yuehchukene analogue. A series of control and spectral experiments, as well as DFT calculations, provide compelling evidence to elucidate the reaction mechanism.
Key words
dearomatization - photocatalysis - indoles - asymmetric catalysis - [2+2] photocycloaddition - cyclopentaindolonesPublication History
Received: 18 September 2024
Accepted after revision: 03 December 2024
Article published online:
28 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Okumura M, Sarlah D. Eur. J. Org. Chem. 2020; 1259
- 1b Zhang Z, Zhou Y.-J, Liang X.-W. Org. Biomol. Chem. 2020; 18: 5558
- 1c Cheng Y.-Z, Feng Z, Zhang X, You S.-L. Chem. Soc. Rev. 2022; 51: 2145
- 1d Zhu M, Zhang X, Zheng C, You S.-L. Acc. Chem. Res. 2022; 55: 2510
- 2a Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 2b Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 2c Zheng C, You S.-L. Chem 2016; 1: 830
- 2d Manoni E, De Nisi A, Bandini MI. Pure Appl. Chem. 2016; 88: 207
- 2e Zheng C, You S.-L. Nat. Prod. Rep. 2019; 36: 1589
- 2f Sheng F.-T, Wang J.-Y, Tan W, Zhang Y.-C, Shi F. Org. Chem. Front. 2020; 7: 3967
- 2g Xia Z.-L, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
- 2h Zheng C, You S.-L. ACS Cent. Sci. 2021; 7: 432
- 2i Liu Y.-Z, Song H, Zheng C, You S.-L. Nat. Synth. 2022; 1: 203
- 2j Aleksiev M, García Mancheño O. Chem. Commun. 2023; 59: 3360
- 3 Hu NF, Jung H, Zheng Y, Lee J, Zhang LL, Ullah Z, Xie XL, Harms K, Baik M.-H, Meggers E. Angew. Chem. Int. Ed. 2018; 57: 6242
- 4 Stegbauer S, Jandl C, Bach T. Angew. Chem. Int. Ed. 2018; 57: 14593
- 5a Stegbauer S, Jandl C, Bach T. Chem. Sci. 2022; 13: 11856
- 5b Yan P, Stegbauer S, Wu QQ, Kolodzeiski E, Stein CJ, Lu P, Bach T. Angew. Chem. Int. Ed. 2024; 63: e202318126
- 6a Ikeda M, Ohno K, Takahashi M, Uno T, Tamura Y, Kido M. J. Chem. Soc., Perkin Trans. 1 1982; 741
- 6b Ikeda M, Ohno K, Mohri S.-i, Takahashi M, Tamura Y. J. Chem. Soc., Perkin Trans. 1 1984; 405
- 6c Gentry EC, Rono LJ, Hale ME, Matsuura R, Knowles RR. J. Am. Chem. Soc. 2018; 140: 3394
- 6d Festa AA, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2019; 48: 4401
- 6e Cheng Y.-Z, Zhao Q.-R, Zhang X, You S.-L. Angew. Chem. Int. Ed. 2019; 58: 18069
- 6f Zhu M, Zheng C, Zhang X, You S.-L. J. Am. Chem. Soc. 2019; 141: 2636
- 6g Strieth-Kalthoff F, Henkel C, Teders M, Kahnt A, Knolle W, Gómez-Suárez A, Dirian K, Alex W, Bergander K, Daniliuc CG, Abel B, Guldi DM, Glorius F. Chem 2019; 5: 2183
- 6h Zhu M, Zhang X, Zheng C, You S.-L. ACS Catal. 2020; 10: 12618
- 6i Zhu M, Huang X.-L, Xu H, Zhang X, Zheng C, You S.-L. CCS Chem. 2020; 2: 652
- 6j Zhu M, Xu H, Zhang X, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 7036
- 6k Ma JJ, Schäfers F, Daniliuc C, Bergander K, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2020; 59: 9639
- 7 Hou L, Yang L, Yang G, Luo Z, Xiao W, Yang L, Wang F, Gong L, Liu X, Cao W, Feng X. J. Am. Chem. Soc. 2024; 146: 23457
- 8a Giachino GG, Kearns DR. J. Chem. Phys. 1970; 52: 2964
- 8b Saigusa H, Azumi T. J. Chem. Phys. 1979; 71: 1408
- 9a Wang M.-Y, Li W. Chin. J. Chem. 2021; 39: 969
- 9b Dong S, Liu X, Feng X. Acc. Chem. Res. 2022; 55: 415
- 9c Chen D.-F, Gong L.-Z. Org. Chem. Front. 2023; 10: 3676
- 9d Dong S, Cao W, Pu M, Liu X, Feng X. CCS Chem. 2023; 5: 2717
- 9e Hou L, Zhou Y, Yu H, Zhan T, Cao W, Feng X. J. Am. Chem. Soc. 2022; 144: 22140
- 9f Tan Z, Zhu S, Liu Y, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202203374
- 9g Zhan T, Yang L, Chen Q, Weng R, Liu X, Feng X. CCS Chem. 2023; 5: 2101
- 9h Feng L, Chen X, Guo N, Zhou Y, Lin L, Cao W, Feng X. Chem. Sci. 2023; 14: 4516
- 9i Li Y, Ning L, Tang Q, Lan K, Yang B, Lin Q, Feng X, Liu X. Chem. Sci. 2024; 15: 11005
- 9j Zhong Z, Wu H, Chen X, Luo Y, Yang L, Feng X, Liu X. J. Am. Chem. Soc. 2024; 146: 20401
- 9k Yihuo A, Pu M, Tan Z, Liao J, Tan J, Zhou Q.-L, Liu X, Feng X. Sci. China Chem. 2024; 67: 2694
- 9l Wu Z, Yang X, Zhang F, Liu Y, Feng X. Chem. Sci. 2024; 15: 13299
- 9m Yang L, Ning L, Yu H, Li S, Yang M, Yang L, Wang F, Liu X, Cao W, Feng X. CCS Chem. 2024;