Synlett
DOI: 10.1055/s-0043-1775372
synpacts

Chiral Sulfones via Single-Electron Oxidation-Initiated Photoenzymatic Catalysis

Pandaram Sakthivel
,
Qinglong Shi
,
Juntao Ye
Financial support from the National Natural Science Foundation of China (Grant No. 22371180 and 22001163) and Shanghai Jiao Tong University are acknowledged.


Abstract

We recently achieved an oxidation-initiated photoenzymatic enantioselective hydrosulfonylation of olefins through the utilization of a new Gluconobacter ene-reductase mutant (GluER-W100F-W342F). Our method simplifies the reaction system by eliminating the need for a cofactor regeneration mixture and, in contrast with previous photoenzymatic systems, does not depend on the formation of an electron donor–acceptor (EDA) complex between the substrates and enzyme cofactor. Moreover, the GluER variant exhibits good substrate compatibility and excellent enantioselectivity. Mechanistic investigations indicate that a tyrosine-mediated HAT process is involved and support the proposed oxidation-initiated mechanism. In this Synpacts article, we discuss the conceptual framework that led to the discovery of this reaction and reflect on the key aspects of its development.

1 Introduction

2 Conceptual Background

2.1 Intramolecular Photoenzymatic Reactions via Single-Electron Reduction

2.2 Intermolecular Photoenzymatic Reactions via Single-Electron Reduction

3 The Development of the Process

4 Conclusion



Publication History

Received: 24 April 2024

Accepted: 31 May 2024

Article published online:
18 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Cao H, Tang X, Tang H, Yuan Y, Wu J. J. Chem Catal. 2021; 1: 523
    • 1b Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
    • 1c Galeotti M, Salamone M, Bietti M. Chem. Soc. Rev. 2022; 51: 2171
    • 1d Murray PR. D, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Chem. Rev. 2022; 122: 2017
    • 1e Ruffoni A, Mykura RC, Bietti M, Leonori D. Nat. Synth. 2022; 1: 682
    • 1f Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Chem. Sci. 2023; 14: 6841
    • 1g Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Chem. Rev. 2022; 122: 5842
    • 1h Nagib DA. Chem. Rev. 2022; 122: 15989
    • 1i Xu G.-Q, Wang W, Xu P.-F. J. Am. Chem. Soc. 2024; 146: 1209

      For selected examples, see:
    • 2a Sibi MP, Asano Y, Sausker JB. Angew. Chem. Int. Ed. 2001; 40: 1293
    • 2b Aechtner T, Dressel M, Bach T. Angew. Chem. Int. Ed. 2004; 43: 5849
    • 2c Luo Y, Wei Q, Yang L, Zhou Y, Cao W, Su Z, Liu X, Feng X. ACS Catal. 2022; 12: 12984
    • 2d Xu Z, Shen J, Li L, Chen W, Li S, Jiang J, Zhang YQ. Angew. Chem. Int. Ed. 2022; 61: e202214111

      For selected examples, see:
    • 3a Nanni D, Curran DP. Tetrahedron: Asymmetry 1996; 7: 2417
    • 3b Blumenstein M, Schwarzkopf K, Metzger JO. Angew. Chem., Int. Ed. Engl. 1997; 36: 235
    • 3c Haque MB, Roberts BP, Tocher DA. J. Chem. Soc., Perkin Trans. 1 1998; 2881
    • 3d Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
    • 3e Hejna BG, Ganley JM, Shao H, Tian H, Ellefsen JD, Fastuca NJ, Houk KN, Miller SJ, Knowles RR. J. Am. Chem. Soc. 2023; 145: 16118
    • 3f Shi Q, Xu M, Chang R, Ramanathan D, Peñin B, Funes-Ardoiz I, Ye J. Nat. Commun. 2022; 13: 4453
    • 3g Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Org. Chem. Front. 2023; 10: 1182

      For selected reviews, see:
    • 4a Hyster TK. Synlett 2020; 31: 248
    • 4b Ye Y, Fu H, Hyster TK. J. Ind. Microbiol. Biotechnol. 2021; 48: kuab021
    • 4c Zhang S, Liu S, Sun Y, Li S, Shi J, Jiang Z. Chem. Soc. Rev. 2021; 50: 13449
    • 4d Roy TK, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Chem. Eur. J. 2022; 28: e202103949
    • 4e Peng Y, Chen Z, Xu J, Wu Q. Org. Process Res. Dev. 2022; 26: 1900
    • 4f Harrison W, Huang X, Zhao H. Acc. Chem. Res. 2022; 55: 1087
    • 4g Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, Dehovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun S.-Z, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK. Chem. Rev. 2023; 123: 5459
    • 4h Ming Y, Chen B, Huang X. Synth. Biol. J. 2023; 4: 651
    • 4i Ming Y, Chen B, Huang X. Synth. Biol. J. 2023; 4: 651
    • 4j Bao Y, Xu Y, Huang X. Mol. Catal. 2024; 553: 113755
    • 4k Fu H, Hyster TK. Acc. Chem. Res. 2024; 57: 1446

      For selected examples, see:
    • 5a Emmanuel MA, Greenberg NR, Oblinsky DG, Hyster TK. Nature 2016; 540: 414
    • 5b Biegasiewicz KF, Cooper SJ, Gao X, Oblinsky DG, Kim JH, Garfinkle SE, Joyce LA, Sandoval BA, Scholes GD, Hyster TK. Science 2019; 364: 1166
    • 5c Black MJ, Biegasiewicz KF, Meichan AJ, Oblinsky DG, Kudisch B, Scholes GD, Hyster TK. Nat. Chem. 2020; 12: 71
    • 5d Fu H, Lam H, Emmanuel MA, Kim JH, Sandoval BA, Hyster TK. J. Am. Chem. Soc. 2021; 143: 9622
    • 5e Fu H, Cao J, Qiao T, Qi Y, Charnock SJ, Garfinkle S, Hyster TK. Nature 2022; 610: 302
    • 5f Ye Y, Cao J, Oblinsky DG, Verma D, Prier CK, Scholes GD, Hyster TK. Nat. Chem. 2023; 15: 206
    • 5g Fu H, Qiao T, Carceller JM, MacMillan SN, Hyster TK. J. Am. Chem. Soc. 2023; 145: 787
    • 5h Ouyang Y, Turek-Herman J, Qiao T, Hyster TK. J. Am. Chem. Soc. 2023; 145: 17018
    • 5i Bender SG, Hyster TK. ACS Catal. 2023; 13: 14680
    • 5j Petchey MR, Ye Y, Spelling V, Finnigan JD, Gittings S, Johansson MJ, Hayes MA, Hyster TK. J. Am. Chem. Soc. 2024; 146: 5005
    • 5k Liu Y, Bender SG, Sorigue D, Diaz DJ, Ellington AD, Mann G, Allmendinger S, Hyster TK. J. Am. Chem. Soc. 2024; 146: 7191
    • 6a Huang X, Wang B, Wang Y, Jiang G, Feng J, Zhao H. Nature 2020; 584: 69
    • 6b Huang X, Feng J, Cui J, Jiang G, Harrison W, Zang X, Zhou J, Wang B, Zhao H. Nat. Catal. 2022; 5: 586
    • 6c Zhang Z, Feng J, Yang C, Cui H, Harrison W, Zhong D, Wang B, Zhao H. Nat. Catal. 2023; 6: 687
    • 6d Li M, Harrison W, Zhang Z, Yuan Y, Zhao H. Nat. Chem. 2024; 16: 277
    • 7a Duan X, Cui D, Wang Z, Zheng D, Jiang L, Huang WY, Jia YX, Xu JA. Angew. Chem. Int. Ed. 2023; 62: e202214135
    • 7b Chen X, Zheng D, Jiang L, Wang Z, Duan X, Cui D, Liu S, Zhang Y, Yu X, Ge J, Xu J. Angew. Chem. Int. Ed. 2023; 62: e202218140

      For selected examples, see:
    • 8a Peng Y, Wang Z, Chen Y, Xu W, Hu Y, Chen Z, Xu J, Wu Q. Angew. Chem. Int. Ed. 2022; 61: e202211199
    • 8b Zhu C, Yuan Z, Deng Z, Yin D, Zhang Y, Zhou J, Rao Y. Angew. Chem. Int. Ed. 2023; 62: e202311762
    • 8c Zhang J, Zhang Q, Chen B, Yu J, Wang B, Huang X. ACS Catal. 2023; 13: 15682
    • 8d Peng Y, Xia K, Wu Q. Mol. Catal. 2024; 553: 113709
    • 9a Sorigue D, Legeret B, Cuine S, Blangy S, Moulin S, Billon E, Richaud P, Brugiere S, Coute Y, Nurizzo D, Muller P, Brettel K, Pignol D, Arnoux P, Li-Beisson Y, Peltier G, Beisson F. Science 2017; 357: 903
    • 9b Sorigue D, Hadjidemetriou K, Blangy S, Gotthard G, Bonvalet A, Coquelle N, Samire P, Aleksandrov A, Antonucci L, Benachir A, Boutet S, Byrdin M, Cammarata M, Carbajo S, Cuine S, Doak RB, Foucar L, Gorel A, Grunbein M, Hartmann E, Hienerwadel R, Hilpert M, Kloos M, Lane TJ, Legeret B, Legrand P, Li-Beisson Y, Moulin SL. Y, Nurizzo D, Peltier G, Schiro G, Shoeman RL, Sliwa M, Solinas X, Zhuang B, Barends TR. M, Colletier JP, Joffre M, Royant A, Berthomieu C, Weik M, Domratcheva T, Brettel K, Vos MH, Schlichting I, Arnoux P, Muller P, Beisson F. Science 2021; 372: 6538
    • 9c Heyes DJ, Lakavath B, Hardman SJ. O, Sakuma M, Hedison TM, Scrutton NS. ACS Catal. 2020; 10: 6691
    • 9d Wu R, Li X, Wang L, Zhong D. Angew. Chem. Int. Ed. 2022; 61: e202209180
    • 9e Wu R, Yang C, Wang L, Zhong D. J. Phys. Chem. Lett. 2022; 13: 11023
    • 10a Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Angew. Chem. Int. Ed. 2019; 58: 8474
    • 10b Xu J, Fan J, Lou Y, Xu W, Wang Z, Li D, Zhou H, Lin X, Wu Q. Nat. Commun. 2021; 12: 3983
  • 11 Zhang W, Ma M, Huijbers MM. E, Filonenko GA, Pidko EA, van Schie M, de Boer S, Burek BO, Bloh JZ, van Berkel WJ. H, Smith WA, Hollmann F. J. Am. Chem. Soc. 2019; 141: 3116
    • 12a Meyer AU, Strakova K, Slanina T, König B. Chem. Eur. J. 2016; 22: 8694
    • 12b Gomes GD. P, Wimmer A, Smith JM, König B, Alabugin IV. J. Org. Chem. 2019; 84: 6232
    • 12c Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 457
    • 13a Fukuzumi S, Yasui K, Suenobu T, Ohkubo K, Fujitsuka M, Ito O. J. Phys. Chem. A 2001; 105: 10501
    • 13b König B, Kümmel S, Svobodová E, Cibulka R. Phys. Sci. Rev. 2018; 3: 20170168
  • 14 Xu J, Cen Y, Singh W, Fan J, Wu L, Lin X, Zhou J, Huang M, Reetz MT, Wu Q. J. Am. Chem. Soc. 2019; 141: 7934
    • 15a Wang JJ, Yu W. Org. Lett. 2019; 21: 9236
    • 15b Hell SM, Meyer CF, Misale A, Sap JB. I, Christensen KE, Willis MC, Trabanco AA, Gouverneur V. Angew. Chem. Int. Ed. 2020; 59: 11620
    • 16a Zhao B, Feng J, Yu L, Xing Z, Chen B, Liu A, Liu F, Shi F, Zhao Y, Tian C, Wang B, Huang X. Nat. Catal. 2023; 6: 996
    • 16b Jiang L, Zheng D, Chen X, Cui D, Duan X, Wang Z, Ge J, Xu J. ACS Catal. 2024; 14: 6710
    • 16c Ju S, Li D, Mai BK, Liu X, Eastman AV, Wu J, Valentine DL, Liu P, Yang Y. Nat. Chem. 2024; in press https://doi.org/10.1038/s41557-024-01494-0
    • 16d Xu Y, Chen H, Yu L, Peng X, Zhang J, Xing Z, Bao Y, Liu A, Zhao Y, Tian C, Liang Y, Huang X. Nature 2024; 625: 74
    • 16e Sun SZ, Nicholls BT, Bain D, Qiao T, Page CG, Musser AJ, Hyster TK. Nat. Catal. 2024; 7: 35