Semin Neurol 2023; 43(04): 609-625
DOI: 10.1055/s-0043-1771470
Review Article

Gastrointestinal Dysfunction in Stroke

Heather Y.F. Yong
1   Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
2   Cumming School of Medicine, University of Calgary, Calgary, Canada
,
Aravind Ganesh
1   Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
2   Cumming School of Medicine, University of Calgary, Calgary, Canada
,
Carlos Camara-Lemarroy
1   Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
2   Cumming School of Medicine, University of Calgary, Calgary, Canada
› Institutsangaben

Abstract

Gastrointestinal (GI) complications are seen in over 50% of ischemic stroke survivors; the most common complications are dysphagia, constipation, and GI bleeding. The bidirectional relationship of the gut–brain axis and stroke has recently gained traction, wherein stroke contributes to gut dysbiosis (alterations in the normal host intestinal microbiome) and gut dysbiosis perpetuates poor functional neurologic outcomes in stroke. It is postulated that the propagation of proinflammatory cells and gut metabolites (including trimethylamine N-oxide and short-chain fatty acids) from the GI tract to the central nervous system play a central role in gut–brain axis dysfunction. In this review, we discuss the known GI complications in acute ischemic stroke, our current knowledge from experimental stroke models for gut–brain axis dysfunction in stroke, and emerging therapeutics that target the gut–brain axis.

Authors' Contributions

H.Y.F.Y., A.G., and C.C.-L. contributed to the literature review. H.Y.F.Y. drafted all the figures and tables, with final input from C.C.-L. and A.G. H.Y.F.Y. wrote the first draft of the manuscript. C.C.-L. approved the final version.


Authors' Statement

The corresponding author C.C.-L. takes full responsibility for the data, the analyses and interpretation, and the conduct of the research; the principal author had full access to all of the data and has the right to publish any and all data separate and apart from any sponsor.




Publikationsverlauf

Artikel online veröffentlicht:
10. August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021; 20 (10) 795-820
  • 2 Feigin VL, Brainin M, Norrving B. et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke 2022; 17 (01) 18-29
  • 3 Chen CM, Hsu HC, Chang CH. et al. Age-based prediction of incidence of complications during inpatient stroke rehabilitation: a retrospective longitudinal cohort study. BMC Geriatr 2014; 14: 41
  • 4 Camara-Lemarroy CR, Ibarra-Yruegas BE, Gongora-Rivera F. Gastrointestinal complications after ischemic stroke. J Neurol Sci 2014; 346 (1-2): 20-25
  • 5 Ullman T, Reding M. Gastrointestinal dysfunction in stroke. Semin Neurol 1996; 16 (03) 269-275
  • 6 Schaller BJ, Graf R, Jacobs AH. Pathophysiological changes of the gastrointestinal tract in ischemic stroke. Am J Gastroenterol 2006; 101 (07) 1655-1665
  • 7 Hong KS, Kang DW, Koo JS. et al. Impact of neurological and medical complications on 3-month outcomes in acute ischaemic stroke. Eur J Neurol 2008; 15 (12) 1324-1331
  • 8 Fu J. Factors affecting the occurrence of gastrointestinal bleeding in acute ischemic stroke patients. Medicine (Baltimore) 2019; 98 (28) e16312
  • 9 Qin J, Li R, Raes J. et al; MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464 (7285): 59-65
  • 10 Dagar S, Singh J, Saini A. et al. Gut bacteriome, mycobiome and virome alterations in rheumatoid arthritis. Front Endocrinol (Lausanne) 2023; 13: 1044673
  • 11 Tuz AA, Hasenberg A, Hermann DM, Gunzer M, Singh V. Ischemic stroke and concomitant gastrointestinal complications- a fatal combination for patient recovery. Front Immunol 2022; 13: 1037330
  • 12 Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38: 1-12
  • 13 Guyomard V, Fulcher RA, Redmayne O, Metcalf AK, Potter JF, Myint PK. Effect of dysphasia and dysphagia on inpatient mortality and hospital length of stay: a database study. J Am Geriatr Soc 2009; 57 (11) 2101-2106
  • 14 Arnold M, Liesirova K, Broeg-Morvay A. et al. Dysphagia in acute stroke: incidence, burden and impact on clinical outcome. PLoS One 2016; 11 (02) e0148424
  • 15 Bonkhoff AK, Rübsamen N, Grefkes C, Rost NS, Berger K, Karch A. Development and validation of prediction models for severe complications after acute ischemic stroke: a study based on the Stroke Registry of Northwestern Germany. J Am Heart Assoc 2022; 11 (06) e023175
  • 16 Rofes L, Muriana D, Palomeras E. et al. Prevalence, risk factors and complications of oropharyngeal dysphagia in stroke patients: a cohort study. Neurogastroenterol Motil 2018; e13338: e13338
  • 17 Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke 2005; 36 (12) 2756-2763
  • 18 Balcerak P, Corbiere S, Zubal R, Kägi G. Post-stroke dysphagia: prognosis and treatment - a systematic review of RCT on interventional treatments for dysphagia following subacute stroke. Front Neurol 2022; 13: 823189
  • 19 Yang C, Pan Y. Risk factors of dysphagia in patients with ischemic stroke: a meta-analysis and systematic review. PLoS One 2022; 17 (06) e0270096
  • 20 Shaker R, Geenen JE. Management of dysphagia in stroke patients. Gastroenterol Hepatol (N Y) 2011; 7 (05) 308-332
  • 21 Eom MJ, Chang MY, Oh DH, Kim HD, Han NM, Park JS. Effects of resistance expiratory muscle strength training in elderly patients with dysphagic stroke. NeuroRehabilitation 2017; 41 (04) 747-752
  • 22 Guillén-Solà A, Messagi Sartor M, Bofill Soler N, Duarte E, Barrera MC, Marco E. Respiratory muscle strength training and neuromuscular electrical stimulation in subacute dysphagic stroke patients: a randomized controlled trial. Clin Rehabil 2017; 31 (06) 761-771
  • 23 Moon JH, Jung JH, Won YS, Cho HY, Cho K. Effects of expiratory muscle strength training on swallowing function in acute stroke patients with dysphagia. J Phys Ther Sci 2017; 29 (04) 609-612
  • 24 Hwang NK, Kim HH, Shim JM, Park JS. Tongue stretching exercises improve tongue motility and oromotor function in patients with dysphagia after stroke: a preliminary randomized controlled trial. Arch Oral Biol 2019; 108: 104521
  • 25 Kim HD, Choi JB, Yoo SJ, Chang MY, Lee SW, Park JS. Tongue-to-palate resistance training improves tongue strength and oropharyngeal swallowing function in subacute stroke survivors with dysphagia. J Oral Rehabil 2017; 44 (01) 59-64
  • 26 Park HS, Oh DH, Yoon T, Park JS. Effect of effortful swallowing training on tongue strength and oropharyngeal swallowing function in stroke patients with dysphagia: a double-blind, randomized controlled trial. Int J Lang Commun Disord 2019; 54 (03) 479-484
  • 27 Carnaby G, Hankey GJ, Pizzi J. Behavioural intervention for dysphagia in acute stroke: a randomised controlled trial. Lancet Neurol 2006; 5 (01) 31-37
  • 28 Cui F, Yin Q, Wu C. et al. Capsaicin combined with ice stimulation improves swallowing function in patients with dysphagia after stroke: a randomised controlled trial. J Oral Rehabil 2020; 47 (10) 1297-1303
  • 29 Perez I, Smithard DG, Davies H, Kalra L. Pharmacological treatment of dysphagia in stroke. Dysphagia 1998; 13 (01) 12-16
  • 30 Feng XG, Hao WJ, Ding Z, Sui Q, Guo H, Fu J. Clinical study on Tongyan spray for post-stroke dysphagia patients: a randomized controlled trial. Chin J Integr Med 2012; 18 (05) 345-349
  • 31 Carnaby GD, LaGorio L, Silliman S, Crary M. Exercise-based swallowing intervention (McNeill Dysphagia Therapy) with adjunctive NMES to treat dysphagia post-stroke: a double-blind placebo-controlled trial. J Oral Rehabil 2020; 47 (04) 501-510
  • 32 Umay EK, Yaylaci A, Saylam G. et al. The effect of sensory level electrical stimulation of the masseter muscle in early stroke patients with dysphagia: a randomized controlled study. Neurol India 2017; 65 (04) 734-742
  • 33 Lee KW, Kim SB, Lee JH, Lee SJ, Ri JW, Park JG. The effect of early neuromuscular electrical stimulation therapy in acute/subacute ischemic stroke patients with Dysphagia. Ann Rehabil Med 2014; 38 (02) 153-159
  • 34 Huang KL, Liu TY, Huang YC, Leong CP, Lin WC, Pong YP. Functional outcome in acute stroke patients with oropharyngeal dysphagia after swallowing therapy. J Stroke Cerebrovasc Dis 2014; 23 (10) 2547-2553
  • 35 Konecny P, Elfmark M. Electrical stimulation of hyoid muscles in post-stroke dysphagia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162 (01) 40-42
  • 36 Lim KB, Lee HJ, Yoo J, Kwon YG. Effect of low-frequency rTMS and NMES on subacute unilateral hemispheric stroke with dysphagia. Ann Rehabil Med 2014; 38 (05) 592-602
  • 37 Power ML, Fraser CH, Hobson A. et al. Evaluating oral stimulation as a treatment for dysphagia after stroke. Dysphagia 2006; 21 (01) 49-55
  • 38 Dziewas R, Stellato R, van der Tweel I. et al; PHAST-TRAC Investigators. Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial. Lancet Neurol 2018; 17 (10) 849-859
  • 39 Bath PM, Scutt P, Love J. et al; Swallowing Treatment Using Pharyngeal Electrical Stimulation (STEPS) Trial Investigators. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial. Stroke 2016; 47 (06) 1562-1570
  • 40 Yang EJ, Baek SR, Shin J. et al. Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia. Restor Neurol Neurosci 2012; 30 (04) 303-311
  • 41 Kumar S, Wagner CW, Frayne C. et al. Noninvasive brain stimulation may improve stroke-related dysphagia: a pilot study. Stroke 2011; 42 (04) 1035-1040
  • 42 Pingue V, Priori A, Malovini A, Pistarini C. Dual transcranial direct current stimulation for poststroke dysphagia: a randomized controlled trial. Neurorehabil Neural Repair 2018; 32 (6-7): 635-644
  • 43 Suntrup-Krueger S, Ringmaier C, Muhle P. et al. Randomized trial of transcranial direct current stimulation for poststroke dysphagia. Ann Neurol 2018; 83 (02) 328-340
  • 44 Park E, Kim MS, Chang WH. et al. Effects of bilateral repetitive transcranial magnetic stimulation on post-stroke dysphagia. Brain Stimul 2017; 10 (01) 75-82
  • 45 Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand 2009; 119 (03) 155-161
  • 46 Tarameshlu M, Ansari NN, Ghelichi L, Jalaei S. The effect of repetitive transcranial magnetic stimulation combined with traditional dysphagia therapy on poststroke dysphagia: a pilot double-blinded randomized-controlled trial. Int J Rehabil Res 2019; 42 (02) 133-138
  • 47 Khedr EM, Abo-Elfetoh N. Therapeutic role of rTMS on recovery of dysphagia in patients with lateral medullary syndrome and brainstem infarction. J Neurol Neurosurg Psychiatry 2010; 81 (05) 495-499
  • 48 Du J, Yang F, Liu L. et al. Repetitive transcranial magnetic stimulation for rehabilitation of poststroke dysphagia: a randomized, double-blind clinical trial. Clin Neurophysiol 2016; 127 (03) 1907-1913
  • 49 Smith CJ, Kishore AK, Vail A. et al. Diagnosis of stroke-associated pneumonia: recommendations from the pneumonia in stroke consensus group. Stroke 2015; 46 (08) 2335-2340
  • 50 Chen Y, Yang H, Wei H, Chen Y, Lan M. Stroke-associated pneumonia: a bibliometric analysis of worldwide trends from 2003 to 2020. Medicine (Baltimore) 2021; 100 (38) e27321
  • 51 Grossmann I, Rodriguez K, Soni M. et al. Stroke and pneumonia: mechanisms, risk factors, management, and prevention. Cureus 2021; 13 (11) e19912
  • 52 Kalra L, Irshad S, Hodsoll J. et al; STROKE-INF Investigators. Prophylactic antibiotics after acute stroke for reducing pneumonia in patients with dysphagia (STROKE-INF): a prospective, cluster-randomised, open-label, masked endpoint, controlled clinical trial. Lancet 2015; 386 (10006): 1835-1844
  • 53 Stanley D, Mason LJ, Mackin KE. et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med 2016; 22 (11) 1277-1284
  • 54 Song TJ, Kim J. Effect of statins on the risk of poststroke pneumonia: National Population-Based Cohort Study. Infect Drug Resist 2020; 13: 2689-2698
  • 55 Scheitz JF, Endres M, Heuschmann PU, Audebert HJ, Nolte CH. Reduced risk of poststroke pneumonia in thrombolyzed stroke patients with continued statin treatment. Int J Stroke 2015; 10 (01) 61-66
  • 56 Netsu S, Mizuma A, Sakamoto M, Yutani S, Nagata E, Takizawa S. Cilostazol is effective to prevent stroke-associated pneumonia in patients receiving tube feeding. Dysphagia 2018; 33 (05) 716-724
  • 57 Warusevitane A, Karunatilake D, Sim J, Lally F, Roffe C. Safety and effect of metoclopramide to prevent pneumonia in patients with stroke fed via nasogastric tubes trial. Stroke 2015; 46 (02) 454-460
  • 58 Eltringham SA, Kilner K, Gee M. et al. Factors associated with risk of stroke-associated pneumonia in patients with dysphagia: a systematic review. Dysphagia 2020; 35 (05) 735-744
  • 59 Chou YF, Weng WC, Huang WY. Association between gastrointestinal bleeding and 3-year mortality in patients with acute, first-ever ischemic stroke. J Clin Neurosci 2017; 44: 289-293
  • 60 Hsu HL, Lin YH, Huang YC. et al. Gastrointestinal hemorrhage after acute ischemic stroke and its risk factors in Asians. Eur Neurol 2009; 62 (04) 212-218
  • 61 Doshi VS, Say JH, Young SH, Doraisamy P. Complications in stroke patients: a study carried out at the Rehabilitation Medicine Service, Changi General Hospital. Singapore Med J 2003; 44 (12) 643-652
  • 62 Rumalla K, Mittal MK. Gastrointestinal bleeding in acute ischemic stroke: a population-based analysis of hospitalizations in the United States. J Stroke Cerebrovasc Dis 2016; 25 (07) 1728-1735
  • 63 Ogata T, Kamouchi M, Matsuo R. et al; Fukuoka Stroke Registry. Gastrointestinal bleeding in acute ischemic stroke: recent trends from the Fukuoka Stroke Registry. Cerebrovasc Dis Extra 2014; 4 (02) 156-164
  • 64 O'Donnell MJ, Kapral MK, Fang J. et al; Investigators of the Registry of the Canadian Stroke Network. Gastrointestinal bleeding after acute ischemic stroke. Neurology 2008; 71 (09) 650-655
  • 65 Du W, Zhao X, Wang Y. et al; China National Stroke Registry (CNSR) Investigators. Gastrointestinal bleeding during acute ischaemic stroke hospitalisation increases the risk of stroke recurrence. Stroke Vasc Neurol 2020; 5 (02) 116-120
  • 66 Wijdicks EF, Fulgham JR, Batts KP. Gastrointestinal bleeding in stroke. Stroke 1994; 25 (11) 2146-2148
  • 67 Davenport RJ, Dennis MS, Warlow CP. Gastrointestinal hemorrhage after acute stroke. Stroke 1996; 27 (03) 421-424
  • 68 Ji R, Shen H, Pan Y. et al; China National Stroke Registry (CNSR) Investigators. Risk score to predict gastrointestinal bleeding after acute ischemic stroke. BMC Gastroenterol 2014; 14: 130
  • 69 Feng G, Xu X, Wang Q, Liu Z, Li Z, Liu G. The protective effects of calcitonin gene-related peptide on gastric mucosa injury after cerebral ischemia reperfusion in rats. Regul Pept 2010; 160 (1-3): 121-128
  • 70 Hung CR. Role of gastric oxidative stress and nitric oxide in formation of hemorrhagic erosion in rats with ischemic brain. World J Gastroenterol 2006; 12 (04) 574-581
  • 71 Kawakubo K, Ibayashi S, Nagao T. et al. Brain ischemia and gastric mucosal damage in spontaneously hypertensive rats: the role of arterial vagal adrenoceptors. Dig Dis Sci 1996; 41 (12) 2383-2391
  • 72 Hughes RE, Tadi P, Bollu PC. TPA Therapy. StatPearls; 2022
  • 73 Baigent C, Blackwell L, Collins R. et al; Antithrombotic Trialists' (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009; 373 (9678): 1849-1860
  • 74 Lanas A, Wu P, Medin J, Mills EJ. Low doses of acetylsalicylic acid increase risk of gastrointestinal bleeding in a meta-analysis. Clin Gastroenterol Hepatol 2011; 9 (09) 762-768.e6
  • 75 Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK. Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001; 345 (07) 494-502
  • 76 Han Y, Liao Z, Li Y. et al. Magnetically controlled capsule endoscopy for assessment of antiplatelet therapy-induced gastrointestinal injury. J Am Coll Cardiol 2022; 79 (02) 116-128
  • 77 Melkonian M, Jarzebowski W, Pautas E, Siguret V, Belmin J, Lafuente-Lafuente C. Bleeding risk of antiplatelet drugs compared with oral anticoagulants in older patients with atrial fibrillation: a systematic review and meta-analysis. J Thromb Haemost 2017; 15 (07) 1500-1510
  • 78 Chang HY, Zhou M, Tang W, Alexander GC, Singh S. Risk of gastrointestinal bleeding associated with oral anticoagulants: population based retrospective cohort study. BMJ 2015; 350: h1585
  • 79 Ballestri S, Romagnoli E, Arioli D. et al. Risk and management of bleeding complications with direct oral anticoagulants in patients with atrial fibrillation and venous thromboembolism: a narrative review. Adv Ther 2023; 40 (01) 41-66
  • 80 Xu W, Lv M, Wu S. et al. Severe bleeding risk of direct oral anticoagulants versus vitamin K antagonists for stroke prevention and treatment in patients with atrial fibrillation: a systematic review and network meta-analysis. Cardiovasc Drugs Ther 2023; 37 (02) 363-377
  • 81 Sung JJ, Lau JY, Ching JY. et al. Continuation of low-dose aspirin therapy in peptic ulcer bleeding: a randomized trial. Ann Intern Med 2010; 152 (01) 1-9
  • 82 Milling TJ, Refaai MA, Sengupta N. Anticoagulant reversal in gastrointestinal bleeding: review of treatment guidelines. Dig Dis Sci 2021; 66 (11) 3698-3714
  • 83 Li L, Geraghty OC, Mehta Z, Rothwell PM. Oxford Vascular Study. Age-specific risks, severity, time course, and outcome of bleeding on long-term antiplatelet treatment after vascular events: a population-based cohort study. Lancet 2017; 390 (10093): 490-499
  • 84 Siddiqui MT, Bilal M, Gollapudi LA. et al. Endoscopy is relatively safe in patients with acute ischemic stroke and gastrointestinal hemorrhage. Dig Dis Sci 2019; 64 (06) 1588-1598
  • 85 Li J, Yuan M, Liu Y, Zhao Y, Wang J, Guo W. Incidence of constipation in stroke patients: a systematic review and meta-analysis. Medicine (Baltimore) 2017; 96 (25) e7225
  • 86 Lin CJ, Hung JW, Cho CY. et al. Poststroke constipation in the rehabilitation ward: incidence, clinical course and associated factors. Singapore Med J 2013; 54 (11) 624-629
  • 87 Sun Y, Lin Y, Wang J. et al. Risk factors for constipation in patients with acute and subacute ischemic stroke: a retrospective cohort study. J Clin Neurosci 2022; 106: 91-95
  • 88 Yi JH, Chun MH, Kim BR, Han EY, Park JY. Bowel function in acute stroke patients. Ann Rehabil Med 2011; 35 (03) 337-343
  • 89 Xiong L, Leung HW, Chen XY, Leung WH, Soo OY, Wong KS. Autonomic dysfunction in different subtypes of post-acute ischemic stroke. J Neurol Sci 2014; 337 (1-2): 141-146
  • 90 De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area?. J Neurol Sci 2015; 348 (1-2): 24-34
  • 91 Cheng J, Li L, Xu F, Xu Y, Lin L, Chen JDZ. Poststroke constipation is associated with impaired rectal sensation. Am J Gastroenterol 2020; 115 (01) 105-114
  • 92 Harari D, Norton C, Lockwood L, Swift C. Treatment of constipation and fecal incontinence in stroke patients: randomized controlled trial. Stroke 2004; 35 (11) 2549-2555
  • 93 Lucente G, Corral J, Rodríguez-Esparragoza L. et al. Current incidence and risk factors of fecal incontinence after acute stroke affecting functionally independent people. Front Neurol 2021; 12: 755432
  • 94 Harari D, Coshall C, Rudd AG, Wolfe CD. New-onset fecal incontinence after stroke: prevalence, natural history, risk factors, and impact. Stroke 2003; 34 (01) 144-150
  • 95 Brittain K, Perry S, Shaw C, Matthews R, Jagger C, Potter J. Isolated urinary, fecal, and double incontinence: prevalence and degree of soiling in stroke survivors. J Am Geriatr Soc 2006; 54 (12) 1915-1919
  • 96 Jacob L, Kostev K. Urinary and fecal incontinence in stroke survivors followed in general practice: a retrospective cohort study. Ann Phys Rehabil Med 2020; 63 (06) 488-494
  • 97 Nakayama H, Jørgensen HS, Pedersen PM, Raaschou HO, Olsen TS. Prevalence and risk factors of incontinence after stroke. The Copenhagen Stroke Study. Stroke 1997; 28 (01) 58-62
  • 98 Brocklehurst JC, Andrews K, Richards B, Laycock PJ. Incidence and correlates of incontinence in stroke patients. J Am Geriatr Soc 1985; 33 (08) 540-542
  • 99 Guo Y, Chung SK, Siu CW. et al. Endothelin-1 overexpression exacerbate experimental allergic encephalomyelitis. J Neuroimmunol 2014; 276 (1-2): 64-70
  • 100 Coggrave M, Norton C, Cody JD. Management of faecal incontinence and constipation in adults with central neurological diseases. Cochrane Database Syst Rev 2014; (01) CD002115
  • 101 Schimmel M, Leemann B, Christou P. et al. Oral health-related quality of life in hospitalised stroke patients. Gerodontology 2011; 28 (01) 3-11
  • 102 Zhu HW, McGrath C, McMillan AS, Li LS. Can caregivers be used in assessing oral health-related quality of life among patients hospitalized for acute medical conditions?. Community Dent Oral Epidemiol 2008; 36 (01) 27-33
  • 103 Cieplik F, Wiedenhofer AM, Pietsch V. et al. Oral health, oral microbiota, and incidence of stroke-associated pneumonia - a prospective observational study. Front Neurol 2020; 11: 528056
  • 104 Moldvai J, Orsós M, Herczeg E, Uhrin E, Kivovics M, Németh O. Oral health status and its associated factors among post-stroke inpatients: a cross-sectional study in Hungary. BMC Oral Health 2022; 22 (01) 234
  • 105 Lee YL, Hu HY, Huang N, Hwang DK, Chou P, Chu D. Dental prophylaxis and periodontal treatment are protective factors to ischemic stroke. Stroke 2013; 44 (04) 1026-1030
  • 106 Loesche WJ, Schork A, Terpenning MS, Chen YM, Kerr C, Dominguez BL. The relationship between dental disease and cerebral vascular accident in elderly United States veterans. Ann Periodontol 1998; 3 (01) 161-174
  • 107 Kwok C, McIntyre A, Janzen S, Mays R, Teasell R. Oral care post stroke: a scoping review. J Oral Rehabil 2015; 42 (01) 65-74
  • 108 Muscari A, Collini A, Fabbri E. et al. Changes of liver enzymes and bilirubin during ischemic stroke: mechanisms and possible significance. BMC Neurol 2014; 14: 122
  • 109 Haley MJ, White CS, Roberts D. et al. Stroke induces prolonged changes in lipid metabolism, the liver and body composition in mice. Transl Stroke Res 2020; 11 (04) 837-850
  • 110 Parikh NS, Navi BB, Schneider Y, Jesudian A, Kamel H. Association between cirrhosis and stroke in a nationally representative cohort. JAMA Neurol 2017; 74 (08) 927-932
  • 111 Wu HY, Lin CS, Yeh CC. et al. Cirrhosis patients' stroke risks and adverse outcomes: two nationwide studies. Atherosclerosis 2017; 263: 29-35
  • 112 Zheng K, Yoshida EM, Tacke F, Li Y, Guo X, Qi X. Risk of stroke in liver cirrhosis: a systematic review and meta-analysis. J Clin Gastroenterol 2020; 54 (01) 96-105
  • 113 Ota K, Oniki A, Kobayashi Z, Ishihara S, Tomimitsu H, Shintani S. Acute pancreatitis is a very rare comorbidity of acute ischemic stroke. J Rural Med 2018; 13 (01) 72-75
  • 114 Charach G, Karniel E, Novikov I. et al. Reduced bile acid excretion is an independent risk factor for stroke and mortality: a prospective follow-up study. Atherosclerosis 2020; 293: 79-85
  • 115 Huang L, Xu G, Zhang R. et al. Increased admission serum total bile acids can be associated with decreased 3-month mortality in patients with acute ischemic stroke. Lipids Health Dis 2022; 21 (01) 15
  • 116 Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, Romero-Ramírez L. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation 2014; 11: 50
  • 117 Rodrigues CM, Spellman SR, Solá S. et al. Neuroprotection by a bile acid in an acute stroke model in the rat. J Cereb Blood Flow Metab 2002; 22 (04) 463-471
  • 118 Rodrigues CM, Sola S, Nan Z. et al. Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci U S A 2003; 100 (10) 6087-6092
  • 119 Rivard AL, Steer CJ, Kren BT. et al. Administration of tauroursodeoxycholic acid (TUDCA) reduces apoptosis following myocardial infarction in rat. Am J Chin Med 2007; 35 (02) 279-295
  • 120 Weisenburger-Lile D, Lopez D, Russel S. et al. IRMA study: prevalence of subdiaphragmatic visceral infarction in ischemic stroke and atrial fibrillation. Int J Stroke 2017; 12 (04) 421-424
  • 121 Abboud H, Labreuche J, Gongora-Riverra F. et al. Prevalence and determinants of subdiaphragmatic visceral infarction in patients with fatal stroke. Stroke 2007; 38 (05) 1442-1446
  • 122 Slaoui T, Klein IF, Guidoux C. et al. Prevalence of subdiaphragmatic visceral infarction in cardioembolic stroke. Neurology 2010; 74 (13) 1030-1032
  • 123 Sohn SI, Park SW, Lee Y. et al. Determinants of visceral infarction in acute cardioembolic stroke due to atrial fibrillation. J Stroke 2021; 23 (02) 277-280
  • 124 Finn C, Hung P, Patel P, Gupta A, Kamel H. Relationship between visceral infarction and ischemic stroke subtype. Stroke 2018; 49 (03) 727-729
  • 125 Piran P, Atalay YB, Gupta A. et al. Relationship between presence of visceral infarction and functional outcome among patients with acute ischemic stroke. Cerebrovasc Dis 2020; 49 (03) 316-320
  • 126 Bang OY, Chung JW, Lee MJ, Seo WK, Kim GM, Ahn MJ. OASIS-Cancer Study Investigators. Cancer-related stroke: an emerging subtype of ischemic stroke with unique pathomechanisms. J Stroke 2020; 22 (01) 1-10
  • 127 Benakis C, Brea D, Caballero S. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 2016; 22 (05) 516-523
  • 128 Singh V, Roth S, Llovera G. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 2016; 36 (28) 7428-7440
  • 129 Stanley D, Moore RJ, Wong CHY. An insight into intestinal mucosal microbiota disruption after stroke. Sci Rep 2018; 8 (01) 568
  • 130 Peh A, O'Donnell JA, Broughton BRS, Marques FZ. Gut microbiota and their metabolites in stroke: a double-edged sword. Stroke 2022; 53 (05) 1788-1801
  • 131 Erny D, Hrabě de Angelis AL, Jaitin D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18 (07) 965-977
  • 132 Hansson J, Bosco N, Favre L. et al. Influence of gut microbiota on mouse B2 B cell ontogeny and function. Mol Immunol 2011; 48 (9-10): 1091-1101
  • 133 Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9 (05) 313-323
  • 134 Mikami Y, Tsunoda J, Kiyohara H, Taniki N, Teratani T, Kanai T. Vagus nerve-mediated intestinal immune regulation: therapeutic implications of inflammatory bowel diseases. Int Immunol 2022; 34 (02) 97-106
  • 135 Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017; 20 (02) 145-155
  • 136 Spychala MS, Venna VR, Jandzinski M. et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol 2018; 84 (01) 23-36
  • 137 Singh V, Sadler R, Heindl S. et al. The gut microbiome primes a cerebroprotective immune response after stroke. J Cereb Blood Flow Metab 2018; 38 (08) 1293-1298
  • 138 Xu K, Gao X, Xia G. et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut 2021 gutjnl-2020-323263
  • 139 Xia GH, You C, Gao XX. et al. Stroke dysbiosis index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front Neurol 2019; 10: 397
  • 140 Schulte-Herbrüggen O, Quarcoo D, Meisel A, Meisel C. Differential affection of intestinal immune cell populations after cerebral ischemia in mice. Neuroimmunomodulation 2009; 16 (03) 213-218
  • 141 Caso JR, Hurtado O, Pereira MP. et al. Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am J Physiol Regul Integr Comp Physiol 2009; 296 (04) R979-R985
  • 142 Winek K, Engel O, Koduah P. et al. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 2016; 47 (05) 1354-1363
  • 143 Li N, Wang X, Sun C. et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 2019; 19 (01) 191
  • 144 Benakis C, Poon C, Lane D. et al. Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke 2020; 51 (06) 1844-1854
  • 145 Houlden A, Goldrick M, Brough D. et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 2016; 57: 10-20
  • 146 Nelson JW, Phillips SC, Ganesh BP, Petrosino JF, Durgan DJ, Bryan RM. The gut microbiome contributes to blood-brain barrier disruption in spontaneously hypertensive stroke prone rats. FASEB J 2021; 35 (02) e21201
  • 147 Adnan S, Nelson JW, Ajami NJ. et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 2017; 49 (02) 96-104
  • 148 Elkind MS, Luna JM, Moon YP. et al. Infectious burden and carotid plaque thickness: the northern Manhattan study. Stroke 2010; 41 (03) e117-e122
  • 149 Elkind MS, Ramakrishnan P, Moon YP. et al. Infectious burden and risk of stroke: the northern Manhattan study. Arch Neurol 2010; 67 (01) 33-38
  • 150 Tonelli A, Lumngwena EN, Ntusi NAB. The oral microbiome in the pathophysiology of cardiovascular disease. Nat Rev Cardiol 2023; 20 (06) 386-403
  • 151 Grau AJ, Becher H, Ziegler CM. et al. Periodontal disease as a risk factor for ischemic stroke. Stroke 2004; 35 (02) 496-501
  • 152 Boaden E, Lyons M, Singhrao SK. et al. Oral flora in acute stroke patients: a prospective exploratory observational study. Gerodontology 2017; 34 (03) 343-356
  • 153 Meisel C, Prass K, Braun J. et al. Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke. Stroke 2004; 35 (01) 2-6
  • 154 Bianchimano P, Britton GJ, Wallach DS. et al. Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. Microbiome 2022; 10 (01) 174
  • 155 Zeraati M, Enayati M, Kafami L, Shahidi SH, Salari AA. Gut microbiota depletion from early adolescence alters adult immunological and neurobehavioral responses in a mouse model of multiple sclerosis. Neuropharmacology 2019; 157: 107685
  • 156 Liu C, Cheng X, Zhong S. et al. Long-term modification of gut microbiota by broad-spectrum antibiotics improves stroke outcome in rats. Stroke Vasc Neurol 2022; 7 (05) 381-389
  • 157 Vermeij JD, Westendorp WF, van de Beek D, Nederkoorn PJ. Post-stroke infections and preventive antibiotics in stroke: update of clinical evidence. Int J Stroke 2018; 13 (09) 913-920
  • 158 Shichita T, Sugiyama Y, Ooboshi H. et al. Pivotal role of cerebral interleukin-17-producing gamma delta T cells in the delayed phase of ischemic brain injury. Nat Med 2009; 15 (08) 946-950
  • 159 Liesz A, Zhou W, Na SY. et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci 2013; 33 (44) 17350-17362
  • 160 Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17 (07) 796-808
  • 161 Gelderblom M, Weymar A, Bernreuther C. et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012; 120 (18) 3793-3802
  • 162 Tascilar N, Irkorucu O, Tascilar O. et al. Bacterial translocation in experimental stroke: what happens to the gut barrier?. Bratisl Lek Listy 2010; 111 (04) 194-199
  • 163 Morton AM, Sefik E, Upadhyay R, Weissleder R, Benoist C, Mathis D. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci U S A 2014; 111 (18) 6696-6701
  • 164 Ye D, Hu Y, Zhu N. et al. Exploratory investigation of intestinal structure and function after stroke in mice. Mediators Inflamm 2021; 2021: 1315797
  • 165 Brea D, Poon C, Benakis C. et al. Stroke affects intestinal immune cell trafficking to the central nervous system. Brain Behav Immun 2021; 96: 295-302
  • 166 Blasco MP, Chauhan A, Honarpisheh P. et al. Age-dependent involvement of gut mast cells and histamine in post-stroke inflammation. J Neuroinflammation 2020; 17 (01) 160
  • 167 Camara-Lemarroy CR, Escobedo-Zúñiga N, Guzmán-de la Garza FJ, Castro-Garza J, Vargas-Villarreal J, Góngora-Rivera F. D-lactate and intestinal fatty acid-binding protein are elevated in serum in patients with acute ischemic stroke. Acta Neurol Belg 2021; 121 (01) 87-93
  • 168 Berer K, Krishnamoorthy G. Commensal gut flora and brain autoimmunity: a love or hate affair?. Acta Neuropathol 2012; 123 (05) 639-651
  • 169 Schiattarella GG, Sannino A, Toscano E. et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J 2017; 38 (39) 2948-2956
  • 170 Haghikia A, Li XS, Liman TG. et al. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 2018; 38 (09) 2225-2235
  • 171 Rexidamu M, Li H, Jin H, Huang J. Serum levels of trimethylamine-N-oxide in patients with ischemic stroke. Biosci Rep 2019; 39 (06) BSR20190515
  • 172 Schneider C, Okun JG, Schwarz KV. et al. Trimethylamine-N-oxide is elevated in the acute phase after ischaemic stroke and decreases within the first days. Eur J Neurol 2020; 27 (08) 1596-1603
  • 173 Zhai Q, Wang X, Chen C. et al. Prognostic value of plasma trimethylamine N-oxide levels in patients with acute ischemic stroke. Cell Mol Neurobiol 2019; 39 (08) 1201-1206
  • 174 Zhu W, Romano KA, Li L. et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 2021; 29 (07) 1199-1208.e5
  • 175 Smith PM, Howitt MR, Panikov N. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341 (6145): 569-573
  • 176 Bhaskaran N, Quigley C, Paw C, Butala S, Schneider E, Pandiyan P. Role of short chain fatty acids in controlling Tregs and immunopathology during mucosal infection. Front Microbiol 2018; 9: 1995
  • 177 Usami M, Kishimoto K, Ohata A. et al. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res 2008; 28 (05) 321-328
  • 178 Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem 2011; 22 (09) 849-855
  • 179 Kaye DM, Shihata WA, Jama HA. et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation 2020; 141 (17) 1393-1403
  • 180 Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?. Neurosci Lett 2016; 625: 56-63
  • 181 Marques FZ, Nelson E, Chu PY. et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 2017; 135 (10) 964-977
  • 182 Sadler R, Cramer JV, Heindl S. et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J Neurosci 2020; 40 (05) 1162-1173
  • 183 Lee J, d'Aigle J, Atadja L. et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ Res 2020; 127 (04) 453-465
  • 184 Chen R, Xu Y, Wu P. et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 2019; 148: 104403
  • 185 Zeng X, Gao X, Peng Y. et al. Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol 2019; 9: 4
  • 186 Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019; 16 (08) 461-478
  • 187 Elmentaite R, Kumasaka N, Roberts K. et al. Cells of the human intestinal tract mapped across space and time. Nature 2021; 597 (7875): 250-255
  • 188 Shin JH, Seeley RJ. Reg3 proteins as gut hormones?. Endocrinology 2019; 160 (06) 1506-1514
  • 189 Khan WI, Ghia JE. Gut hormones: emerging role in immune activation and inflammation. Clin Exp Immunol 2010; 161 (01) 19-27
  • 190 Galura GM, Chavez LO, Robles A, McCallum R. Gastroduodenal injury: role of protective factors. Curr Gastroenterol Rep 2019; 21 (08) 34
  • 191 Sands M, Frank JA, Maglinger B. et al. Antimicrobial protein REG3A and signaling networks are predictive of stroke outcomes. J Neurochem 2022; 160 (01) 100-112
  • 192 Liu SQ, Roberts D, Zhang B, Ren Y, Zhang LQ, Wu YH. Trefoil factor 3 as an endocrine neuroprotective factor from the liver in experimental cerebral ischemia/reperfusion injury. PLoS One 2013; 8 (10) e77732
  • 193 O'Donnell PM, Aviles H, Lyte M, Sonnenfeld G. Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: importance of inoculum density and role of transferrin. Appl Environ Microbiol 2006; 72 (07) 5097-5099
  • 194 Ampo K, Suzuki A, Konishi H, Kiyama H. Induction of pancreatitis-associated protein (PAP) family members in neurons after traumatic brain injury. J Neurotrauma 2009; 26 (10) 1683-1693
  • 195 Maglinger B, Frank JA, McLouth CJ. et al. Proteomic changes in intracranial blood during human ischemic stroke. J Neurointerv Surg 2021; 13 (04) 395-399
  • 196 Hijazi Z, Wallentin L, Lindbäck J. et al. Screening of multiple biomarkers associated with ischemic stroke in atrial fibrillation. J Am Heart Assoc 2020; 9 (24) e018984
  • 197 Liu X, Zhang Y, Chu J. et al. Effect of probiotics on the nutritional status of severe stroke patients with nasal feeding that receive enteral nutrition: a protocol for systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100 (17) e25657
  • 198 Chen X, Hu Y, Yuan X, Yang J. , Ka Li. Effect of early enteral nutrition combined with probiotics in patients with stroke: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2022; 76 (04) 592-603
  • 199 Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry 2022; 12 (01) 164
  • 200 Ji M, Li S, Dong Q, Hu W. Impact of early high-protein diet on neurofunctional recovery in rats with ischemic stroke. Med Sci Monit 2018; 24: 2235-2243
  • 201 García-Cabo C, Castañón-Apilánez M, Benavente-Fernández L. et al; NORDICTUS Investigators. Impact of Mediterranean diet prior to stroke on the prognosis of patients undergoing endovascular treatment. Cerebrovasc Dis 2021; 50 (03) 303-309
  • 202 Cheng K, Wang Z, Bai J, Xiong J, Chen J, Ni J. Research advances in the application of vagus nerve electrical stimulation in ischemic stroke. Front Neurosci 2022; 16: 1043446
  • 203 Hays SA, Ruiz A, Bethea T. et al. Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol Aging 2016; 43: 111-118
  • 204 Dawson J, Liu CY, Francisco GE. et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet 2021; 397 (10284): 1545-1553
  • 205 Al KF, Craven LJ, Gibbons S. et al. Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: a pilot randomized controlled trial. Mult Scler J Exp Transl Clin 2022; 8 (02) 20 552173221086662
  • 206 Burgueño JF, Abreu MT. Epithelial toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol 2020; 17 (05) 263-278