Semin Respir Crit Care Med 2023; 44(05): 612-626
DOI: 10.1055/s-0043-1770341
Review Article

Arterial Blood Gases and Acid–Base Regulation

Sarah F. Sanghavi
1   Division of Nephrology, Department of Medicine, University of Washington, Puget Sound Veterans Affairs Healthcare System, Seattle, Washington
,
Erik R. Swenson
2   Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Puget Sound Veterans Affairs Healthcare System, Seattle, Washington
› Author Affiliations

Abstract

Disorders of acid-base status are common in the critically ill and prompt recognition is central to clinical decision making. The bicarbonate/carbon dioxide buffer system plays a pivotal role in maintaining acid-base homeostasis, and measurements of pH, PCO2, and HCO3 - are routinely used in the estimation of metabolic and respiratory disturbance severity. Hypoventilation and hyperventilation cause primary respiratory acidosis and primary respiratory alkalosis, respectively. Metabolic acidosis and metabolic alkalosis have numerous origins, that include alterations in acid or base intake, body fluid losses, abnormalities of intermediary metabolism, and renal, hepatic, and gastrointestinal dysfunction. The concept of the anion gap is used to categorize metabolic acidoses, and urine chloride excretion helps define metabolic alkaloses. Both the lungs and kidneys employ compensatory mechanisms to minimize changes in pH caused by various physiologic and disease disturbances. Treatment of acid-base disorders should focus primarily on correcting the underlying cause and the hemodynamic and electrolyte derangements that ensue. Specific therapies under certain conditions include renal replacement therapy, mechanical ventilation, respiratory stimulants or depressants, and inhibition of specific enzymes in intermediary metabolism disorders.



Publication History

Article published online:
27 June 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Maren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 1967; 47 (04) 595-781
  • 2 Effros RM, Chang RS, Silverman P. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science 1978; 199 (4327): 427-429
  • 3 Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2010; 11 (01) 50-61
  • 4 Albert TJ, Swenson ER. Circumstances when arterial blood gas analysis can lead us astray. Respir Care 2016; 61 (01) 119-121
  • 5 Adrogué HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med 1989; 320 (20) 1312-1316
  • 6 Winters RW. Terminology of acid-base disorders. Ann Intern Med 1965; 63 (05) 873-884
  • 7 Adrogué HJ, Tucker BM, Madias NE. Clinical approach to assessing acid-base status: physiological vs Stewart. Adv Chronic Kidney Dis 2022; 29 (04) 343-354
  • 8 Berend K. Diagnostic use of base excess in acid-base disorders. N Engl J Med 2018; 378 (15) 1419-1428
  • 9 de Seigneux S, Malte H, Dimke H, Frøkiaer J, Nielsen S, Frische S. Renal compensation to chronic hypoxic hypercapnia: downregulation of pendrin and adaptation of the proximal tubule. Am J Physiol Renal Physiol 2007; 292 (04) F1256-F1266
  • 10 Gennari FJ, Goldstein MB, Schwartz WB. The nature of the renal adaptation to chronic hypocapnia. J Clin Invest 1972; 51 (07) 1722-1730
  • 11 Albert MS, Dell RB, Winters RW. Quantitative displacement of acid-base equilibrium in metabolic acidosis. Ann Intern Med 1967; 66 (02) 312-322
  • 12 Javaheri S, Kazemi H. Metabolic alkalosis and hypoventilation in humans. Am Rev Respir Dis 1987; 136 (04) 1011-1016
  • 13 Madias NE, Adrogué HJ, Cohen JJ. Maladaptive renal response to secondary hypercapnia in chronic metabolic alkalosis. Am J Physiol 1980; 238 (04) F283-F289
  • 14 Feldman M, Alvarez NM, Trevino M, Weinstein GL. Respiratory compensation to a primary metabolic alkalosis in humans. Clin Nephrol 2012; 78 (05) 365-369
  • 15 Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol 2007; 2 (01) 162-174
  • 16 Mehta AN, Emmett JB, Emmett M. GOLD MARK: an anion gap mnemonic for the 21st century. Lancet 2008; 372 (9642): 892
  • 17 Fernandez PC, Cohen RM, Feldman GM. The concept of bicarbonate distribution space: the crucial role of body buffers. Kidney Int 1989; 36 (05) 747-752
  • 18 Vernon C, Letourneau JL. Lactic acidosis: recognition, kinetics, and associated prognosis. Crit Care Clin 2010; 26 (02) 255-283
  • 19 Metcalfe HK, Monson JP, Welch SG, Cohen RD. Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism. J Clin Invest 1986; 78 (03) 743-747
  • 20 Blumenberg A, Benabbas R, Sinert R, Jeng A, Wiener SW. Do patients die with or from metformin-associated lactic acidosis (MALA)? Systematic review and meta-analysis of pH and lactate as predictors of mortality in MALA. J Med Toxicol 2020; 16 (02) 222-229
  • 21 Vecchio S, Giampreti A, Petrolini VM. et al. Metformin accumulation: lactic acidosis and high plasmatic metformin levels in a retrospective case series of 66 patients on chronic therapy. Clin Toxicol (Phila) 2014; 52 (02) 129-135
  • 22 Blough B, Moreland A, Mora Jr A. Metformin-induced lactic acidosis with emphasis on the anion gap. Proc Bayl Univ Med Cent 2015; 28 (01) 31-33
  • 23 Emmett M. Acetaminophen toxicity and 5-oxoproline (pyroglutamic acid): a tale of two cycles, one an ATP-depleting futile cycle and the other a useful cycle. Clin J Am Soc Nephrol 2014; 9 (01) 191-200
  • 24 Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324 (5930): 1029-1033
  • 25 Oh MS, Uribarri J, Alveranga D, Lazar I, Bazilinski N, Carroll HJ. Metabolic utilization and renal handling of D-lactate in men. Metabolism 1985; 34 (07) 621-625
  • 26 Miles JM, Haymond MW, Nissen SL, Gerich JE. Effects of free fatty acid availability, glucagon excess, and insulin deficiency on ketone body production in postabsorptive man. J Clin Invest 1983; 71 (06) 1554-1561
  • 27 Palmer BF, Clegg DJ. Euglycemic ketoacidosis as a complication of SGLT2 inhibitor therapy. Clin J Am Soc Nephrol 2021; 16 (08) 1284-1291
  • 28 Mistry S, Eschler DC. Euglycemic diabetic ketoacidosis caused by SGLT2 inhibitors and a ketogenic diet: a case series and review of literature. AACE Clin Case Rep 2020; 7 (01) 17-19
  • 29 Saponaro C, Mühlemann M, Acosta-Montalvo A. et al. Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes 2020; 69 (05) 902-914
  • 30 Kraut JA, Mullins ME. Toxic alcohols. N Engl J Med 2018; 378 (03) 270-280
  • 31 Brent J. Fomepizole for ethylene glycol and methanol poisoning. N Engl J Med 2009; 360 (21) 2216-2223
  • 32 Zakharov S, Pelclova D, Navratil T. et al. Intermittent hemodialysis is superior to continuous veno-venous hemodialysis/hemodiafiltration to eliminate methanol and formate during treatment for methanol poisoning. Kidney Int 2014; 86 (01) 199-207
  • 33 Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med 1988; 318 (10) 594-599
  • 34 Gil FZ, Malnic G. Effect of amphotericin B on renal tubular acidification in the rat. Pflugers Arch 1989; 413 (03) 280-286
  • 35 Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 2012; 27 (12) 4273-4287
  • 36 Brenes LG, Sanchez MI. Impaired urinary ammonium excretion in patients with isolated proximal renal tubular acidosis. J Am Soc Nephrol 1993; 4 (04) 1073-1078
  • 37 Harris AN, Grimm PR, Lee HW. et al. Mechanism of hyperkalemia-induced metabolic acidosis. J Am Soc Nephrol 2018; 29 (05) 1411-1425
  • 38 Carlisle EJ, Donnelly SM, Vasuvattakul S, Kamel KS, Tobe S, Halperin ML. Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol 1991; 1 (08) 1019-1027
  • 39 Swenson ER. Metabolic acidosis. Respir Care 2001; 46 (04) 342-353
  • 40 Jaber S, Paugam C, Futier E. et al; BICAR-ICU Study Group. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet 2018; 392 (10141): 31-40
  • 41 Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 2015; 10 (02) 305-324
  • 42 Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PMT, Kohan DE. Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 2015; 10 (01) 135-146
  • 43 Palmer BF, Alpern RJ. Metabolic alkalosis. J Am Soc Nephrol 1997; 8 (09) 1462-1469
  • 44 Castrop H, Lorenz JN, Hansen PB. et al. Contribution of the basolateral isoform of the Na-K-2Cl- cotransporter (NKCC1/BSC2) to renin secretion. Am J Physiol Renal Physiol 2005; 289 (06) F1185-F1192
  • 45 Cooper LB, Mentz RJ, Gallup D. et al. Serum bicarbonate in acute heart failure: relationship to treatment strategies and clinical outcomes. J Card Fail 2016; 22 (09) 738-742
  • 46 Bosch JP, Goldstein MH, Levitt MF, Kahn T. Effect of chronic furosemide administration on hydrogen and sodium excretion in the dog. Am J Physiol 1977; 232 (05) F397-F404
  • 47 Felsenfeld AJ, Levine BS. Milk alkali syndrome and the dynamics of calcium homeostasis. Clin J Am Soc Nephrol 2006; 1 (04) 641-654
  • 48 Galla JH. Metabolic alkalosis. J Am Soc Nephrol 2000; 11 (02) 369-375
  • 49 Anderson LE, Henrich WL. Alkalemia-associated morbidity and mortality in medical and surgical patients. South Med J 1987; 80 (06) 729-733
  • 50 Sliwiński M, Hoffman M, Biederman A, Wangin H, Holdrowicz M. Association between hypokaliaemic alkalosis and development of arrhythmia in early postoperative period. Anaesth Resusc Intensive Ther 1974; 2 (03) 193-204
  • 51 Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol 2012; 23 (02) 204-207
  • 52 Mullens W, Dauw J, Martens P. et al; ADVOR Study Group. Acetazolamide in acute decompensated heart failure with volume overload. N Engl J Med 2022; 387 (13) 1185-1195
  • 53 Swenson ER. Safety of carbonic anhydrase inhibitors. Expert Opin Drug Saf 2014; 13 (04) 459-472
  • 54 Schwartz WB, Cohen JJ. The nature of the renal response to chronic disorders of acid-base equilibrium. Am J Med 1978; 64 (03) 417-428
  • 55 Abdo WF, Heunks LMA. Oxygen-induced hypercapnia in COPD: myths and facts. Crit Care 2012; 16 (05) 323