Semin Respir Crit Care Med 2023; 44(06): 738-745
DOI: 10.1055/s-0043-1770117
Review Article

The Right Ventricle in Pulmonary Hypertension

Jeroen N. Wessels*
1   PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2   Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
3   European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Germany
,
Lucas R. Celant*
1   PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2   Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
3   European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Germany
,
Frances S. de Man
1   PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2   Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
3   European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Germany
,
Anton Vonk Noordegraaf
1   PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2   Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
3   European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Germany
› Author Affiliations

Abstract

The right ventricle plays a pivotal role in patients with pulmonary hypertension (PH). Its adaptation to pressure overload determines a patient's functional status as well as survival. In a healthy situation, the right ventricle is part of a low pressure, high compliance system. It is built to accommodate changes in preload, but not very well suited for dealing with pressure overload. In PH, right ventricular (RV) contractility must increase to maintain cardiac output. In other words, the balance between the degree of RV contractility and afterload determines stroke volume. Hypertrophy is one of the major hallmarks of RV adaptation, but it may cause stiffening of the ventricle in addition to intrinsic changes to the RV myocardium. Ventricular filling becomes more difficult for which the right atrium tries to compensate through increased stroke work. Interaction of RV diastolic stiffness and right atrial (RA) function determines RV filling, but also causes vena cava backflow. Assessment of RV and RA function is critical in the evaluation of patient status. In recent guidelines, this is acknowledged by incorporating additional RV parameters in the risk stratification in PH. Several conventional parameters of RV and RA function have been part of risk stratification for many years. Understanding the pathophysiology of RV failure and the interactions with the pulmonary circulation and right atrium requires consideration of the unique RV anatomy. This review will therefore describe normal RV structure and function and changes that occur during adaptation to increased afterload. Consequences of a failing right ventricle and its implications for RA function will be discussed. Subsequently, we will describe RV and RA assessment in clinical practice.

* These authors contributed equally.




Publication History

Article published online:
24 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 2017; 69 (02) 236-243
  • 2 van de Veerdonk MC, Kind T, Marcus JT. et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 2011; 58 (24) 2511-2519
  • 3 Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 2009; 135 (03) 794-804
  • 4 Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 2014; 115 (01) 176-188
  • 5 Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 2008; 117 (11) 1436-1448
  • 6 van Wolferen SA, Marcus JT, Boonstra A. et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 2007; 28 (10) 1250-1257
  • 7 Marcus JT, Gan CTJ, Zwanenburg JJM. et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol 2008; 51 (07) 750-757
  • 8 Bustamante-Labarta M, Perrone S, De La Fuente RL. et al. Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr 2002; 15 (10, Pt 2): 1160-1164
  • 9 Raymond RJ, Hinderliter AL, Willis IV PW. et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 2002; 39 (07) 1214-1219
  • 10 Humbert M, Kovacs G, Hoeper MM. et al; ESC/ERS Scientific Document Group. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2023; 61 (01) 2200879
  • 11 Ghio S, Mercurio V, Fortuni F. et al; TAPSE in PAH Investigators. A comprehensive echocardiographic method for risk stratification in pulmonary arterial hypertension. Eur Respir J 2020; 56 (03) 2000513
  • 12 Lewis RA, Johns CS, Cogliano M. et al. Identification of cardiac magnetic resonance imaging thresholds for risk stratification in pulmonary arterial hypertension. Am J Respir Crit Care Med 2020; 201 (04) 458-468
  • 13 Buckberg GD. Basic science review: the helix and the heart. J Thorac Cardiovasc Surg 2002; 124 (05) 863-883
  • 14 Dell'Italia LJ. The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol 1991; 16 (10) 653-720
  • 15 Savadjiev P, Strijkers GJ, Bakermans AJ, Piuze E, Zucker SW, Siddiqi K. Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc Natl Acad Sci U S A 2012; 109 (24) 9248-9253
  • 16 Hill MR, Simon MA, Valdez-Jasso D, Zhang W, Champion HC, Sacks MS. Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann Biomed Eng 2014; 42 (12) 2451-2465
  • 17 Rain S, Handoko ML, Trip P. et al. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 2013; 128 (18) 2016-2025 , 1–10
  • 18 Goh ZM, Balasubramanian N, Alabed S. et al. Right ventricular remodelling in pulmonary arterial hypertension predicts treatment response. Heart 2022; 108 (17) 1392-1400
  • 19 Vonk Noordegraaf A, Chin KM, Haddad F. et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 2019; 53 (01) 1801900
  • 20 Trip P, Kind T, van de Veerdonk MC. et al. Accurate assessment of load-independent right ventricular systolic function in patients with pulmonary hypertension. J Heart Lung Transplant 2013; 32 (01) 50-55
  • 21 Brener MI, Burkhoff D, Sunagawa K. Effective arterial elastance in the pulmonary arterial circulation: derivation, assumptions, and clinical applications. Circ Heart Fail 2020; 13 (03) e006591
  • 22 Rain S, Andersen S, Najafi A. et al. Right ventricular myocardial stiffness in experimental pulmonary arterial hypertension. Circ Heart Fail 2016; 9 (07) e002636
  • 23 Tello K, Dalmer A, Vanderpool R. et al. Cardiac magnetic resonance imaging-based right ventricular strain analysis for assessment of coupling and diastolic function in pulmonary hypertension. JACC Cardiovasc Imaging 2019; 12 (11, Pt 1): 2155-2164
  • 24 Trip P, Rain S, Handoko ML. et al. Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J 2015; 45 (06) 1603-1612
  • 25 Vanderpool RR, Hunter KS, Insel M. et al. The right ventricular-pulmonary arterial coupling and diastolic function response to therapy in pulmonary arterial hypertension. Chest 2022; 161 (04) 1048-1059
  • 26 Wessels JN, Mouratoglou SA, van Wezenbeek J. et al. Right atrial function is associated with right ventricular diastolic stiffness: RA-RV interaction in pulmonary arterial hypertension. Eur Respir J 2022; 59 (06) 2101454
  • 27 Marcus JT, Westerhof BE, Groeneveldt JA, Bogaard HJ, de Man FS, Vonk Noordegraaf A. Vena cava backflow and right ventricular stiffness in pulmonary arterial hypertension. Eur Respir J 2019; 54 (04) 1900625
  • 28 van Wezenbeek J, Kianzad A, van de Bovenkamp A. et al. Right ventricular and right atrial function are less compromised in pulmonary hypertension secondary to heart failure with preserved ejection fraction: a comparison with pulmonary arterial hypertension with similar pressure overload. Circ Heart Fail 2022; 15 (02) e008726
  • 29 Rosenkranz S, Howard LS, Gomberg-Maitland M, Hoeper MM. Systemic consequences of pulmonary hypertension and right-sided heart failure. Circulation 2020; 141 (08) 678-693
  • 30 Hassoun PM. Pulmonary arterial hypertension. N Engl J Med 2021; 385 (25) 2361-2376
  • 31 Bleeker GB, Steendijk P, Holman ER. et al. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart 2006; 92 (suppl 1): i19-i26
  • 32 Rosenkranz S, Preston IR. Right heart catheterisation: best practice and pitfalls in pulmonary hypertension. Eur Respir Rev 2015; 24 (138) 642-652
  • 33 Naeije R, Manes A. The right ventricle in pulmonary arterial hypertension. Eur Respir Rev 2014; 23 (134) 476-487
  • 34 McLure LER, Peacock AJ. Cardiac magnetic resonance imaging for the assessment of the heart and pulmonary circulation in pulmonary hypertension. Eur Respir J 2009; 33 (06) 1454-1466
  • 35 Peacock AJ, Crawley S, McLure L. et al. Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging 2014; 7 (01) 107-114
  • 36 Mauritz GJ, Marcus JT, Boonstra A, Postmus PE, Westerhof N, Vonk-Noordegraaf A. Non-invasive stroke volume assessment in patients with pulmonary arterial hypertension: left-sided data mandatory. J Cardiovasc Magn Reson 2008; 10 (01) 51
  • 37 Truong U, Meinel K, Haddad F. et al. Update on noninvasive imaging of right ventricle dysfunction in pulmonary hypertension. Cardiovasc Diagn Ther 2020; 10 (05) 1604-1624
  • 38 Lang RM, Badano LP, Mor-Avi V. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28 (01) 1-39.e14
  • 39 Alabed S, Garg P, Johns CS. et al. Cardiac magnetic resonance in pulmonary hypertension - an update. Curr Cardiovasc Imaging Rep 2020; 13 (12) 30
  • 40 Aryal SR, Sharifov OF, Lloyd SG. Emerging role of cardiovascular magnetic resonance imaging in the management of pulmonary hypertension. Eur Respir Rev 2020; 29 (156) 1-14
  • 41 Fine NM, Chen L, Bastiansen PM. et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 2013; 6 (05) 711-721
  • 42 Hulshof HG, Eijsvogels TMH, Kleinnibbelink G. et al. Prognostic value of right ventricular longitudinal strain in patients with pulmonary hypertension: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 2019; 20 (04) 475-484
  • 43 Muraru D, Haugaa K, Donal E. et al. Right ventricular longitudinal strain in the clinical routine: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2022; 23 (07) 898-912
  • 44 Galiè N, Humbert M, Vachiery JL. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2015; 46: 879-882
  • 45 Richter MJ, Fortuni F, Alenezi F. et al. Imaging the right atrium in pulmonary hypertension: a systematic review and meta-analysis. J Heart Lung Transplant 2023; 42 (04) 433-446
  • 46 Maceira AM, Cosin-Sales J, Prasad SK, Pennell DJ. Characterization of left and right atrial function in healthy volunteers by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2016; 18 (01) 64
  • 47 Lang RM, Cameli M, Sade LE. et al. Imaging assessment of the right atrium: anatomy and function. Eur Heart J Cardiovasc Imaging 2022; 23 (07) 867-884
  • 48 Sato T, Tsujino I, Ohira H. et al. Right atrial volume and reservoir function are novel independent predictors of clinical worsening in patients with pulmonary hypertension. J Heart Lung Transplant 2015; 34 (03) 414-423
  • 49 Bredfelt A, Rådegran G, Hesselstrand R, Arheden H, Ostenfeld E. Increased right atrial volume measured with cardiac magnetic resonance is associated with worse clinical outcome in patients with pre-capillary pulmonary hypertension. ESC Heart Fail 2018; 5 (05) 864-875
  • 50 Alandejani F, Alabed S, Garg P. et al. Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements. J Cardiovasc Magn Reson 2022; 24 (01) 25