Semin Respir Crit Care Med 2023; 44(05): 538-554
DOI: 10.1055/s-0043-1770059
Review Article

The Pulmonary Vasculature

Susan R. Hopkins
1   Department of Radiology, University of California, San Diego, California
,
Michael K. Stickland
2   Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
› Institutsangaben

Abstract

The pulmonary circulation is a low-pressure, low-resistance circuit whose primary function is to deliver deoxygenated blood to, and oxygenated blood from, the pulmonary capillary bed enabling gas exchange. The distribution of pulmonary blood flow is regulated by several factors including effects of vascular branching structure, large-scale forces related to gravity, and finer scale factors related to local control. Hypoxic pulmonary vasoconstriction is one such important regulatory mechanism. In the face of local hypoxia, vascular smooth muscle constriction of precapillary arterioles increases local resistance by up to 250%. This has the effect of diverting blood toward better oxygenated regions of the lung and optimizing ventilation–perfusion matching. However, in the face of global hypoxia, the net effect is an increase in pulmonary arterial pressure and vascular resistance. Pulmonary vascular resistance describes the flow-resistive properties of the pulmonary circulation and arises from both precapillary and postcapillary resistances. The pulmonary circulation is also distensible in response to an increase in transmural pressure and this distention, in addition to recruitment, moderates pulmonary arterial pressure and vascular resistance. This article reviews the physiology of the pulmonary vasculature and briefly discusses how this physiology is altered by common circumstances.



Publikationsverlauf

Artikel online veröffentlicht:
10. Oktober 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Glenny RW, Robertson HT. Determinants of pulmonary blood flow distribution. Compr Physiol 2011; 1 (01) 39-59
  • 2 West JB, Dollery CT. Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive carbon dioxide. J Appl Physiol 1960; 15 (03) 405-410
  • 3 West JB. Distribution of pulmonary blood flow. Am J Respir Crit Care Med 1999; 160 (06) 1802-1803
  • 4 Hopkins SR, Henderson AC, Levin DL. et al. Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol 2007; 103 (01) 240-248
  • 5 Glazier JB, Hughes JM, Maloney JE, West JB. Vertical gradient of alveolar size in lungs of dogs frozen intact. J Appl Physiol 1967; 23 (05) 694-705
  • 6 Glazier JB, Hughes JM, Maloney JE, West JB. Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J Appl Physiol 1969; 26 (01) 65-76
  • 7 Tawhai MH, Nash MP, Lin CL, Hoffman EA. Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol 2009; 107 (03) 912-920
  • 8 Fung YC, Sobin SS. Theory of sheet flow in lung alveoli. J Appl Physiol 1969; 26 (04) 472-488
  • 9 Fung YC, Sobin SS. Pulmonary alveolar blood flow. Circ Res 1972; 30 (04) 470-490
  • 10 Mandelbrot BB. The Fractal Geometry of Nature. San Francisco, CA: W.H. Freeman; 1983
  • 11 Glenny R, Robertson HT. Distribution of perfusion. Compr Physiol 2011; 1 (01) 245-262
  • 12 Glenny RW, Robertson HT. Spatial distribution of ventilation and perfusion: mechanisms and regulation. Compr Physiol 2011; 1 (01) 375-395
  • 13 Lefèvre J. Teleonomical optimization of a fractal model of the pulmonary arterial bed. J Theor Biol 1983; 102 (02) 225-248
  • 14 West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 1999; 284 (5420): 1677-1679
  • 15 Ochs M, Weibel ER. Functional design of the human lung for gas exchange. In: Grippi MA, Elias JA, Fishman JA, et al., eds. Fishman's Pulmonary Diseases and Disorders, 5th ed. New York, NY: McGraw-Hill Education; 2015
  • 16 Galvin I, Drummond GB, Nirmalan M. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth 2007; 98 (04) 420-428
  • 17 Altemeier WA, McKinney S, Glenny RW. Fractal nature of regional ventilation distribution. J Appl Physiol 2000; 88 (05) 1551-1557
  • 18 Hopkins SR. Ventilation/perfusion relationships and gas exchange: measurement approaches. Compr Physiol 2020; 10 (03) 1155-1205
  • 19 Hsia CCW, Bates JHT, Driehuys B. et al. Quantitative imaging metrics for the assessment of pulmonary pathophysiology: an official American Thoracic Society and Fleischner Society joint workshop report. Ann Am Thorac Soc 2023; 20 (02) 161-195
  • 20 Glenny RW, McKinney S, Robertson HT. Spatial pattern of pulmonary blood flow distribution is stable over days. J Appl Physiol 1997; 82 (03) 902-907
  • 21 Glenny RW. Heterogeneity in the lung: concepts and measures. In: Hlastala MP, Robertson HT, eds. Complexity in Structure and Function in the Lung. New York, NY: Marcel Dekker Inc.; 1998: 571-609
  • 22 Hall ET, Sá RC, Holverda S. et al. The effect of supine exercise on the distribution of regional pulmonary blood flow measured using proton MRI. J Appl Physiol 2014; 116 (04) 451-461
  • 23 Glenny RW, Robertson HT. Fractal modeling of pulmonary blood flow heterogeneity. J Appl Physiol 1991; 70 (03) 1024-1030
  • 24 Glenny RW, Robertson HT. Fractal properties of pulmonary blood flow: characterization of spatial heterogeneity. J Appl Physiol 1990; 69 (02) 532-545
  • 25 Glenny RW, Bernard SL, Robertson HT. Pulmonary blood flow remains fractal down to the level of gas exchange. J Appl Physiol 2000; 89 (02) 742-748
  • 26 Sinclair SE, McKinney S, Glenny RW, Bernard SL, Hlastala MP. Exercise alters fractal dimension and spatial correlation of pulmonary blood flow in the horse. J Appl Physiol 2000; 88 (06) 2269-2278
  • 27 Caruthers SD, Harris TR. Effects of pulmonary blood flow on the fractal nature of flow heterogeneity in sheep lungs. J Appl Physiol 1994; 77 (03) 1474-1479
  • 28 Levin DL, Buxton RB, Spiess JP, Arai T, Balouch J, Hopkins SR. Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance imaging. J Appl Physiol 2007; 102 (05) 2064-2070
  • 29 Banister J, Torrance RW. The effects of the tracheal pressure upon flow: pressure relations in the vascular bed of isolated lungs. Q J Exp Physiol Cogn Med Sci 1960; 45 (04) 352-367
  • 30 West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 1964; 19: 713-724
  • 31 Hughes JM, Glazier JB, Maloney JE, West JB. Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol 1968; 4 (01) 58-72
  • 32 Hopkins SR, Arai TJ, Henderson AC, Levin DL, Buxton RB, Kim Prisk G. Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans. J Physiol 2010; 588 (Pt 23): 4759-4768
  • 33 Amis TC, Jones HA, Hughes JM. Effect of posture on inter-regional distribution of pulmonary perfusion and VA/Q ratios in man. Respir Physiol 1984; 56 (02) 169-182
  • 34 Brudin LH, Rhodes CG, Valind SO, Jones T, Hughes JM. Interrelationships between regional blood flow, blood volume, and ventilation in supine humans. J Appl Physiol 1994; 76 (03) 1205-1210
  • 35 Jones AT, Hansell DM, Evans TW. Pulmonary perfusion in supine and prone positions: an electron-beam computed tomography study. J Appl Physiol 2001; 90 (04) 1342-1348
  • 36 Orphanidou D, Hughes JM, Myers MJ, Al-Suhali AR, Henderson B. Tomography of regional ventilation and perfusion using krypton 81m in normal subjects and asthmatic patients. Thorax 1986; 41 (07) 542-551
  • 37 Kaneko K, Milic-Emili J, Dolovich MB, Dawson A, Bates DV. Regional distribution of ventilation and perfusion as a function of body position. J Appl Physiol 1966; 21 (03) 767-777
  • 38 Petersson J, Rohdin M, Sánchez-Crespo A. et al. Paradoxical redistribution of pulmonary blood flow in prone and supine humans exposed to hypergravity. J Appl Physiol 2006; 100 (01) 240-248
  • 39 Burrowes KS, Hunter PJ, Tawhai MH. Evaluation of the effect of postural and gravitational variations on the distribution of pulmonary blood flow via an image-based computational model. Conf Proc IEEE Eng Med Biol Soc 2005; 2005: 6138-6140
  • 40 Burrowes KS, Tawhai MH. Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir Physiol Neurobiol 2006; 154 (03) 515-523
  • 41 Glenny RW. Spatial correlation of regional pulmonary perfusion. J Appl Physiol 1992; 72 (06) 2378-2386
  • 42 Glenny RW, Bernard S, Robertson HT, Hlastala MP. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J Appl Physiol 1999; 86 (02) 623-632
  • 43 Hlastala MP, Bernard SL, Erickson HH. et al. Pulmonary blood flow distribution in standing horses is not dominated by gravity. J Appl Physiol 1996; 81 (03) 1051-1061
  • 44 Wagner Jr WW, Jaryszak EM, Peterson AJ. et al. A perpetual switching system in pulmonary capillaries. J Appl Physiol 2019; 126 (02) 494-501
  • 45 Wearn JT, Ernstene AC, Bromer AW, Barr JS, German WJ, Zschiesche LJ. The normal behavior of the pulmonary blood vessels with observations on the intermittence of the flow of blood in the arterioles and capillaries. Am J Physiol 1934; 109 (02) 236-256
  • 46 Stickland MK, Welsh RC, Haykowsky MJ. et al. Intra-pulmonary shunt and pulmonary gas exchange during exercise in humans. J Physiol 2004; 561 (Pt 1): 321-329
  • 47 Bryan TL, van Diepen S, Bhutani M, Shanks M, Welsh RC, Stickland MK. The effects of dobutamine and dopamine on intrapulmonary shunt and gas exchange in healthy humans. J Appl Physiol 2012; 113 (04) 541-548
  • 48 Whyte MK, Peters AM, Hughes JM. et al. Quantification of right to left shunt at rest and during exercise in patients with pulmonary arteriovenous malformations. Thorax 1992; 47 (10) 790-796
  • 49 Stickland MK, Lovering AT, Eldridge MW. Exercise-induced arteriovenous intrapulmonary shunting in dogs. Am J Respir Crit Care Med 2007; 176 (03) 300-305
  • 50 Stickland MK, Tedjasaputra V, Seaman C. et al. Intra-pulmonary arteriovenous anastomoses and pulmonary gas exchange: evaluation by microspheres, contrast echocardiography and inert gas elimination. J Physiol 2019; 597 (22) 5365-5384
  • 51 Aaronson PI, Robertson TP, Knock GA. et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol 2006; 570 (pt. 1): 53-58
  • 52 Glenny RW, Polissar NL, McKinney S, Robertson HT. Temporal heterogeneity of regional pulmonary perfusion is spatially clustered. J Appl Physiol 1995; 79 (03) 986-1001
  • 53 Asadi AK, Sá RC, Kim NH. et al. Inhaled nitric oxide alters the distribution of blood flow in the healthy human lung, suggesting active hypoxic pulmonary vasoconstriction in normoxia. J Appl Physiol 2015; 118 (03) 331-343
  • 54 Asadi AK, Cronin MV, Sá RC. et al. Spatial-temporal dynamics of pulmonary blood flow in the healthy human lung in response to altered FI(O2). J Appl Physiol 2013; 114 (01) 107-118
  • 55 Asadi AK, Sá RC, Arai TJ. et al. Regional pulmonary perfusion patterns in humans are not significantly altered by inspiratory hypercapnia. J Appl Physiol 2019; 127 (02) 365-375
  • 56 Beutner A. Ueber die Strom- und Druckkräfte des Blutes in der Arteria pulmonalis. Z rationelle Med 1852; 2: 97-138
  • 57 Plumier L. La circulation pulmonaire chez le chien. Arch Int Physiol 1904; 1: 176-213
  • 58 Euler Uv, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 1946; 12 (04) 301-320
  • 59 Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92 (01) 367-520
  • 60 Naeije R, Brimioulle S. Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 2001; 5 (02) 67-71
  • 61 Bärtsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation 2007; 116 (19) 2191-2202
  • 62 Swenson ER. Hypoxic pulmonary vasoconstriction. High Alt Med Biol 2013; 14 (02) 101-110
  • 63 Dunham-Snary KJ, Wu D, Sykes EA. et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 2017; 151 (01) 181-192
  • 64 Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 2016; 47 (01) 288-303
  • 65 Grimmer B, Kuebler WM. The endothelium in hypoxic pulmonary vasoconstriction. J Appl Physiol 2017; 123 (06) 1635-1646
  • 66 Dawson CA, Grimm DJ, Linehan JH. Influence of hypoxia on the longitudinal distribution of pulmonary vascular resistance. J Appl Physiol 1978; 44 (04) 493-498
  • 67 Dawson CA, Grimm DJ, Linehan JH. Lung inflation and longitudinal distribution of pulmonary vascular resistance during hypoxia. J Appl Physiol 1979; 47 (03) 532-536
  • 68 Groh J, Kuhnle GE, Kuebler WM, Goetz AE. An experimental model for simultaneous quantitative analysis of pulmonary micro- and macrocirculation during unilateral hypoxia in vivo. Res Exp Med (Berl) 1992; 192 (06) 431-441
  • 69 Hakim TS, Michel RP, Minami H, Chang HK. Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion. J Appl Physiol 1983; 54 (05) 1298-1302
  • 70 Madden JA, Dawson CA, Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol 1985; 59 (01) 113-118
  • 71 Strielkov I, Pak O, Sommer N, Weissmann N. Recent advances in oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. J Appl Physiol 2017; 123 (06) 1647-1656
  • 72 Dorrington KL, Clar C, Young JD, Jonas M, Tansley JG, Robbins PA. Time course of the human pulmonary vascular response to 8 hours of isocapnic hypoxia. Am J Physiol 1997; 273 (3, Pt 2): H1126-H1134
  • 73 Groves BM, Reeves JT, Sutton JR. et al. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol 1987; 63 (02) 521-530
  • 74 Domino KB, Hlastala MP, Eisenstein BL, Cheney FW. Effect of regional alveolar hypoxia on gas exchange in dogs. J Appl Physiol 1989; 67 (02) 730-735
  • 75 Hambraeus-Jonzon K, Bindslev L, Frostell C, Hedenstierna G. Individual lung blood flow during unilateral hypoxia: effects of inhaled nitric oxide. Eur Respir J 1998; 11 (03) 565-570
  • 76 Marshall BE, Marshall C, Benumof J, Saidman LJ. Hypoxic pulmonary vasoconstriction in dogs: effects of lung segment size and oxygen tension. J Appl Physiol 1981; 51 (06) 1543-1551
  • 77 Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care 2014; 4: 28
  • 78 West JB. Regional differences in the lung. Chest 1978; 74 (04) 426-437
  • 79 West JB, Luks AM. West's Respiratory Physiology. Philadelphia, PA: Lippincott Williams & Wilkins; 2020
  • 80 Whittenberger JL, McGREGOR M, Berglund E, Borst HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 1960; 15 (05) 878-882
  • 81 Hakim TS, Michel RP, Chang HK. Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appl Physiol 1982; 53 (05) 1110-1115
  • 82 Dubowitz G, Peacock AJ. Pulmonary artery pressure in healthy subjects at 4250 m measured by Doppler echocardiography. Wilderness Environ Med 2007; 18 (04) 305-311
  • 83 Canepa A, Chavez R, Hurtado A, Rotta A, Velasquez T. Pulmonary circulation at sea level and at high altitudes. J Appl Physiol 1956; 9 (03) 328-336
  • 84 Voelkel NF, Mizuno S, Bogaard HJ. The role of hypoxia in pulmonary vascular diseases: a perspective. Am J Physiol Lung Cell Mol Physiol 2013; 304 (07) L457-L465
  • 85 Grover RF. The fascination of the hypoxic lung. Anesthesiology 1985; 63 (06) 580-582
  • 86 Sommer N, Dietrich A, Schermuly RT. et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J 2008; 32 (06) 1639-1651
  • 87 Glasser SA, Domino KB, Lindgren L, Parcella P, Marshall C, Marshall BE. Pulmonary blood pressure and flow during atelectasis in the dog. Anesthesiology 1983; 58 (03) 225-231
  • 88 Dawson A. Regional pulmonary blood flow in sitting and supine man during and after acute hypoxia. J Clin Invest 1969; 48 (02) 301-310
  • 89 Arai TJ, Henderson AC, Dubowitz DJ. et al. Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol 2009; 106 (04) 1057-1064
  • 90 Schuster DP, Anderson C, Kozlowski J, Lange N. Regional pulmonary perfusion in patients with acute pulmonary edema. J Nucl Med 2002; 43 (07) 863-870
  • 91 Wagner PD, Dantzker DR, Dueck R, Clausen JL, West JB. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Invest 1977; 59 (02) 203-216
  • 92 Naeye RL. Children at high altitude: pulmonary and renal abnormalities. Circ Res 1965; 16: 33-38
  • 93 Sylvester JT, Harabin AL, Peake MD, Frank RS. Vasodilator and constrictor responses to hypoxia in isolated pig lungs. J Appl Physiol 1980; 49 (05) 820-825
  • 94 Weissmann N, Grimminger F, Walmrath D, Seeger W. Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respir Physiol 1995; 100 (02) 159-169
  • 95 Vejlstrup NG, Dorrington KL. Intense slow hypoxic pulmonary vasoconstriction in gas-filled and liquid-filled lungs: an in vivo study in the rabbit. Acta Physiol Scand 1993; 148 (03) 305-313
  • 96 Vejlstrup NG, O'Neill M, Nagyova B, Dorrington KL. Time course of hypoxic pulmonary vasoconstriction: a rabbit model of regional hypoxia. Am J Respir Crit Care Med 1997; 155 (01) 216-221
  • 97 Morrell NW, Nijran KS, Biggs T, Seed WA. Magnitude and time course of acute hypoxic pulmonary vasoconstriction in man. Respir Physiol 1995; 100 (03) 271-281
  • 98 Carlsson AJ, Bindslev L, Santesson J, Gottlieb I, Hedenstierna G. Hypoxic pulmonary vasoconstriction in the human lung: the effect of prolonged unilateral hypoxic challenge during anaesthesia. Acta Anaesthesiol Scand 1985; 29 (03) 346-351
  • 99 Marshall BE, Marshall C, Frasch F, Hanson CW. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 1. Physiologic concepts. Intensive Care Med 1994; 20 (04) 291-297
  • 100 Marshall C, Marshall B. Site and sensitivity for stimulation of hypoxic pulmonary vasoconstriction. J Appl Physiol 1983; 55 (03) 711-716
  • 101 Marshall BE, Marshall C. A model for hypoxic constriction of the pulmonary circulation. J Appl Physiol 1988; 64 (01) 68-77
  • 102 Mélot C, Naeije R, Hallemans R, Lejeune P, Mols P. Hypoxic pulmonary vasoconstriction and pulmonary gas exchange in normal man. Respir Physiol 1987; 68 (01) 11-27
  • 103 Grünig E, Mereles D, Hildebrandt W. et al. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol 2000; 35 (04) 980-987
  • 104 Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev 2010; 90 (04) 1291-1335
  • 105 Arias-Stella J, Saldana M. The terminal portion of the pulmonary arterial tree in people native to high altitudes. Circulation 1963; 28 (05) 915-925
  • 106 Naeye RL. Hypoxemia, Effects on the Pulmonary Vascular Bed. Normal And Abnormal Pulmonary Circulation. Basel: Karger Publishers; 1963: 302-309
  • 107 Brimioulle S, LeJeune P, Naeije R. Effects of hypoxic pulmonary vasoconstriction on pulmonary gas exchange. J Appl Physiol 1996; 81 (04) 1535-1543
  • 108 Marshall BE, Marshall C. Continuity of response to hypoxic pulmonary vasoconstriction. J Appl Physiol 1980; 49 (02) 189-196
  • 109 Bindslev L, Jolin A, Hedenstierna G, Baehrendtz S, Santesson J. Hypoxic pulmonary vasoconstriction in the human lung: effect of repeated hypoxic challenges during anesthesia. Anesthesiology 1985; 62 (05) 621-625
  • 110 Neumann PH, Kivlen CM, Johnson A, Minnear FL, Malik AB. Effect of alveolar hypoxia on regional pulmonary perfusion. J Appl Physiol 1984; 56 (02) 338-342
  • 111 Hlastala MP, Lamm WJ, Karp A, Polissar NL, Starr IR, Glenny RW. Spatial distribution of hypoxic pulmonary vasoconstriction in the supine pig. J Appl Physiol 2004; 96 (05) 1589-1599
  • 112 Hopkins SR, Garg J, Bolar DS, Balouch J, Levin DL. Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema. Am J Respir Crit Care Med 2005; 171 (01) 83-87
  • 113 Dehnert C, Risse F, Ley S. et al. Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans. Am J Respir Crit Care Med 2006; 174 (10) 1132-1138
  • 114 Patz MD, Sá RC, Darquenne C. et al. Susceptibility to high-altitude pulmonary edema is associated with a more uniform distribution of regional specific ventilation. J Appl Physiol 2017; 122 (04) 844-852
  • 115 Naeije R, Chesler N. Pulmonary circulation at exercise. Compr Physiol 2012; 2 (01) 711-741
  • 116 Naeije R. Physiology of the pulmonary circulation and the right heart. Curr Hypertens Rep 2013; 15 (06) 623-631
  • 117 Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest 2009; 136 (01) 37-43
  • 118 Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009; 34 (04) 888-894
  • 119 Himelman RB, Stulbarg M, Kircher B. et al. Noninvasive evaluation of pulmonary artery pressure during exercise by saline-enhanced Doppler echocardiography in chronic pulmonary disease. Circulation 1989; 79 (04) 863-871
  • 120 Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1997; 30 (06) 1527-1533
  • 121 Cope DK, Grimbert F, Downey JM, Taylor AE. Pulmonary capillary pressure: a review. Crit Care Med 1992; 20 (07) 1043-1056
  • 122 Bhattacharya J, Nanjo S, Staub NC. Micropuncture measurement of lung microvascular pressure during 5-HT infusion. J Appl Physiol 1982; 52 (03) 634-637
  • 123 Reeves JT, Taylor AE. Pulmonary hemodynamics and fluid exchange in the lungs during exercise. In: Rowell LB, Shepherd, J.T, eds. Handbook of Physiology: A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. New York, NY: Oxford University Press; 1996: 585-613
  • 124 Moraes DL, Colucci WS, Givertz MM. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation 2000; 102 (14) 1718-1723
  • 125 Linehan JH, Haworth ST, Nelin LD, Krenz GS, Dawson CA. A simple distensible vessel model for interpreting pulmonary vascular pressure-flow curves. J Appl Physiol 1992; 73 (03) 987-994
  • 126 Reeves JT, Linehan JH, Stenmark KR. Distensibility of the normal human lung circulation during exercise. Am J Physiol Lung Cell Mol Physiol 2005; 288 (03) L419-L425
  • 127 Lalande S, Yerly P, Faoro V, Naeije R. Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. J Physiol 2012; 590 (17) 4279-4288
  • 128 Krenz GS, Dawson CA. Flow and pressure distributions in vascular networks consisting of distensible vessels. Am J Physiol Heart Circ Physiol 2003; 284 (06) H2192-H2203
  • 129 Argiento P, Vanderpool RR, Mulè M. et al. Exercise stress echocardiography of the pulmonary circulation: limits of normal and sex differences. Chest 2012; 142 (05) 1158-1165
  • 130 Sharma R, Kumar A, Aneja GK. Serial changes in pulmonary hemodynamics during pregnancy: a non-invasive study using Doppler echocardiography. Cardiol Res 2016; 7 (01) 25-31
  • 131 Singh I, Horn E, Haythe J. Pulmonary hypertension in pregnancy. Clin Chest Med 2021; 42 (01) 91-99
  • 132 Beck KC, Rehder K. Differences in regional vascular conductances in isolated dog lungs. J Appl Physiol 1986; 61 (02) 530-538
  • 133 Greenleaf JF, Ritman EL, Sass DJ, Wood EH. Spatial distribution of pulmonary blood flow in dogs in left decubitus position. Am J Physiol 1974; 227 (01) 230-244
  • 134 Reed Jr JH, Wood EH. Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol 1970; 28 (03) 303-311
  • 135 Atwood RM, Burchell HB, Tauxe WN. Pulmonary scans achieved with macroaggregated radioiodinated albumin: use in diagnosis of pulmonary artery agenesis. Am J Med Sci 1966; 252 (01) 84-88
  • 136 Friedman WF, Braunwald E. Alterations in regional pulmonary blood flow in mitral valve disease studied by radioisotope scanning. A simple nontraumatic technique for estimation of left atrial pressure. Circulation 1966; 34 (03) 363-376
  • 137 Tauxe WN, Burchell HB, Chaapel DW, Sprau A. Quantitating the effect of gravity on lung scans of macroaggregates of albumin-I-131. J Appl Physiol 1966; 21 (04) 1381-1386
  • 138 Lovering AT, Haverkamp HC, Romer LM, Hokanson JS, Eldridge MW. Transpulmonary passage of 99mTc macroaggregated albumin in healthy humans at rest and during maximal exercise. J Appl Physiol 2009; 106 (06) 1986-1992
  • 139 Roughton FJ, Forster RE. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol 1957; 11 (02) 290-302
  • 140 Hsia CCW. Recruitment of lung diffusing capacity: update of concept and application. Chest 2002; 122 (05) 1774-1783
  • 141 Langleben D, Orfanos SE, Giovinazzo M. et al. Pulmonary capillary surface area in supine exercising humans: demonstration of vascular recruitment. Am J Physiol Lung Cell Mol Physiol 2019; 317 (03) L361-L368
  • 142 Orfanos SE, Langleben D, Khoury J. et al. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in humans. Circulation 1999; 99 (12) 1593-1599
  • 143 Cardús J, Burgos F, Diaz O. et al. Increase in pulmonary ventilation-perfusion inequality with age in healthy individuals. Am J Respir Crit Care Med 1997; 156 (2, pt 1): 648-653
  • 144 Janssens JP. Aging of the respiratory system: impact on pulmonary function tests and adaptation to exertion. Clin Chest Med 2005; 26 (03) 469-484 , vi–vii
  • 145 Holley HS, Milic-Emili J, Becklake MR, Bates DV. Regional distribution of pulmonary ventilation and perfusion in obesity. J Clin Invest 1967; 46 (04) 475-481
  • 146 Frerichs I, Braun P, Dudykevych T, Hahn G, Genée D, Hellige G. Distribution of ventilation in young and elderly adults determined by electrical impedance tomography. Respir Physiol Neurobiol 2004; 143 (01) 63-75
  • 147 Verbanck S, Thompson BR, Schuermans D. et al. Ventilation heterogeneity in the acinar and conductive zones of the normal ageing lung. Thorax 2012; 67 (09) 789-795
  • 148 Lam CS, Borlaug BA, Kane GC, Enders FT, Rodeheffer RJ, Redfield MM. Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation 2009; 119 (20) 2663-2670
  • 149 Coffman KE, Carlson AR, Miller AD, Johnson BD, Taylor BJ. The effect of aging and cardiorespiratory fitness on the lung diffusing capacity response to exercise in healthy humans. J Appl Physiol 2017; 122 (06) 1425-1434
  • 150 Chang SC, Chang HI, Liu SY, Shiao GM, Perng RP. Effects of body position and age on membrane diffusing capacity and pulmonary capillary blood volume. Chest 1992; 102 (01) 139-142
  • 151 Stam H, Hrachovina V, Stijnen T, Versprille A. Diffusing capacity dependent on lung volume and age in normal subjects. J Appl Physiol 1994; 76 (06) 2356-2363
  • 152 Georges R, Saumon G, Loiseau A. The relationship of age to pulmonary membrane conductance and capillary blood volume. Am Rev Respir Dis 1978; 117 (06) 1069-1078
  • 153 Hermann EA, Motahari A, Hoffman EA. et al. Pulmonary blood volume among older adults in the community: the MESA Lung Study. Circ Cardiovasc Imaging 2022; 15 (08) e014380
  • 154 Huang YC, Helms MJ, MacIntyre NR. Normal values for single exhalation diffusing capacity and pulmonary capillary blood flow in sitting, supine positions, and during mild exercise. Chest 1994; 105 (02) 501-508
  • 155 Ross BA, Brotto AR, Fuhr DP. et al. The supine position improves but does not normalize the blunted pulmonary capillary blood volume response to exercise in mild COPD. J Appl Physiol 2020; 128 (04) 925-933
  • 156 Johnson Jr RL, Spicer WS, Bishop JM, Forster RE. Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J Appl Physiol 1960; 15: 893-902
  • 157 Holland J, Milic-Emili J, Macklem PT, Bates DV. Regional distribution of pulmonary ventilation and perfusion in elderly subjects. J Clin Invest 1968; 47 (01) 81-92
  • 158 McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 2001; 104 (23) 2797-2802
  • 159 Anthonisen NR, Milic-Emili J. Distribution of pulmonary perfusion in erect man. J Appl Physiol 1966; 21 (03) 760-766
  • 160 West JB. Importance of gravity in determining the distribution of pulmonary blood flow. J Appl Physiol 2002; 93 (05) 1888-1889 , author reply 1889–1891
  • 161 Prisk GK, Yamada K, Henderson AC. et al. Pulmonary perfusion in the prone and supine postures in the normal human lung. J Appl Physiol 2007; 103 (03) 883-894
  • 162 Fain SB, Altes TA, Panth SR. et al. Detection of age-dependent changes in healthy adult lungs with diffusion-weighted 3He MRI. Acad Radiol 2005; 12 (11) 1385-1393
  • 163 Higginbotham MB, Morris KG, Williams RS, McHale PA, Coleman RE, Cobb FR. Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res 1986; 58 (02) 281-291
  • 164 Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol 1986; 61 (01) 260-270
  • 165 Tedjasaputra V, Bouwsema MM, Stickland MK. Effect of aerobic fitness on capillary blood volume and diffusing membrane capacity responses to exercise. J Physiol 2016; 594 (15) 4359-4370
  • 166 Bouwsema MM, Tedjasaputra V, Stickland MK. Are there sex differences in the capillary blood volume and diffusing capacity response to exercise?. J Appl Physiol 2017; 122 (03) 460-469
  • 167 Hsia CC, McBrayer DG, Ramanathan M. Reference values of pulmonary diffusing capacity during exercise by a rebreathing technique. Am J Respir Crit Care Med 1995; 152 (02) 658-665
  • 168 Langleben D, Fox BD, Orfanos SE, Giovinazzo M, Catravas JD. Pulmonary capillary recruitment and distention in mammalian lungs: species similarities. Eur Respir Rev 2022; 31 (163) 210248
  • 169 La Gerche A, Rakhit DJ, Claessen G. Exercise and the right ventricle: a potential Achilles' heel. Cardiovasc Res 2017; 113 (12) 1499-1508
  • 170 Zavorsky GS, Smoliga JM. The association between cardiorespiratory fitness and pulmonary diffusing capacity. Respir Physiol Neurobiol 2017; 241: 28-35
  • 171 Elbehairy AF, Faisal A, Guenette JA. et al; Canadian Respiratory Research Network (CRRN). Resting physiological correlates of reduced exercise capacity in smokers with mild airway obstruction. COPD 2017; 14 (03) 267-275
  • 172 West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R. Stress failure in pulmonary capillaries. J Appl Physiol 1991; 70 (04) 1731-1742
  • 173 Hopkins SR, Schoene RB, Henderson WR, Spragg RG, Martin TR, West JB. Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes. Am J Respir Crit Care Med 1997; 155 (03) 1090-1094
  • 174 West JB, Mathieu-Costello O, Jones JH. et al. Stress failure of pulmonary capillaries in racehorses with exercise-induced pulmonary hemorrhage. J Appl Physiol 1993; 75 (03) 1097-1109
  • 175 Hopkins SR, Schoene RB, Henderson WR, Spragg RG, West JB. Sustained submaximal exercise does not alter the integrity of the lung blood-gas barrier in elite athletes. J Appl Physiol 1998; 84 (04) 1185-1189
  • 176 West JB. Invited review: pulmonary capillary stress failure. J Appl Physiol 2000; 89 (06) 2483-2489 , discussion 2497
  • 177 Bake B, Bjure J, Widimsky J. The effect of sitting and graded exercise on the distribution of pulmonary blood flow in healthy subjects studied with the 133Xenon technique. Scand J Clin Lab Invest 1968; 22 (02) 99-106
  • 178 Harf A, Pratt T, Hughes JM. Regional distribution of VA/Q in man at rest and with exercise measured with krypton-81m. J Appl Physiol 1978; 44 (01) 115-123
  • 179 Mohsenifar Z, Ross MD, Waxman A, Goldbach P, Koerner SK. Changes in distribution of lung perfusion and ventilation at rest and during maximal exercise. Chest 1985; 87 (03) 359-362
  • 180 Hopkins SR, Kleinsasser A, Bernard S. et al. Hypoxia has a greater effect than exercise on the redistribution of pulmonary blood flow in swine. J Appl Physiol 2007; 103 (06) 2112-2119
  • 181 Melsom MN, Flatebø T, Sjaastad OV, Aulie A, Nicolaysen G. Minor redistribution of ventilation and perfusion within the lung during exercise in sheep. Acta Physiol Scand 1999; 165 (03) 283-292
  • 182 Bernard SL, Glenny RW, Erickson HH. et al. Minimal redistribution of pulmonary blood flow with exercise in racehorses. J Appl Physiol 1996; 81 (03) 1062-1070
  • 183 Kuikka JT, Länsimies E. A fractal approach for evaluation of pulmonary circulation in man at rest and during exercise. Clin Physiol 1999; 19 (02) 107-110
  • 184 Parker JC, Ardell JL, Hamm CR, Barman SA, Coker PJ. Regional pulmonary blood flow during rest, tilt, and exercise in unanesthetized dogs. J Appl Physiol 1995; 78 (03) 838-846
  • 185 Burnham KJ, Arai TJ, Dubowitz DJ. et al. Pulmonary perfusion heterogeneity is increased by sustained, heavy exercise in humans. J Appl Physiol 2009; 107 (05) 1559-1568
  • 186 Tedjasaputra V, Sá RC, Anderson KM, Prisk GK, Hopkins SR. Heavy upright exercise increases ventilation-perfusion mismatch in the basal lung: indirect evidence for interstitial pulmonary edema. J Appl Physiol 2019; 127 (02) 473-481
  • 187 Stokes DL, MacIntyre NR, Nadel JA. Nonlinear increases in diffusing capacity during exercise by seated and supine subjects. J Appl Physiol 1981; 51 (04) 858-863
  • 188 Musch G, Layfield JD, Harris RS. et al. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol 2002; 93 (05) 1841-1851
  • 189 Nyrén S, Mure M, Jacobsson H, Larsson SA, Lindahl SG. Pulmonary perfusion is more uniform in the prone than in the supine position: scintigraphy in healthy humans. J Appl Physiol 1999; 86 (04) 1135-1141
  • 190 Henderson AC, Sá RC, Theilmann RJ, Buxton RB, Prisk GK, Hopkins SR. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung. J Appl Physiol 2013; 115 (03) 313-324
  • 191 Rohdin M, Petersson J, Sundblad P. et al. Effects of gravity on lung diffusing capacity and cardiac output in prone and supine humans. J Appl Physiol 2003; 95 (01) 3-10
  • 192 Soni N, Williams P. Positive pressure ventilation: what is the real cost?. Br J Anaesth 2008; 101 (04) 446-457
  • 193 Nieman GF, Paskanik AM, Bredenberg CE. Effect of positive end-expiratory pressure on alveolar capillary perfusion. J Thorac Cardiovasc Surg 1988; 95 (04) 712-716
  • 194 Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care 2005; 9 (06) 607-621
  • 195 Kallas HJ, Domino KB, Glenny RW, Anderson EA, Hlastala MP. Pulmonary blood flow redistribution with low levels of positive end-expiratory pressure. Anesthesiology 1998; 88 (05) 1291-1299
  • 196 Petersson J, Ax M, Frey J, Sánchez-Crespo A, Lindahl SG, Mure M. Positive end-expiratory pressure redistributes regional blood flow and ventilation differently in supine and prone humans. Anesthesiology 2010; 113 (06) 1361-1369