Semin Neurol 2023; 43(02): 187-194
DOI: 10.1055/s-0043-1767714
Review Article

Historical Perspectives on the Neurologic Manifestations of Viral Pandemics

1   Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
,
Aaron L. Berkowitz
2   Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
› Institutsangaben

Abstract

Neurologic symptoms have been reported in over 30% of hospitalized patients with coronavirus disease 2019 (COVID-19), but the pathogenesis of these symptoms remains under investigation. Here, we place the neurologic complications of COVID-19 within the context of three historical viral pandemics that have been associated with neurologic diseases: (1) the 1918 influenza pandemic, subsequent spread of encephalitis lethargica, and lessons for the study of COVID-19-related neuroinflammation; (2) the controversial link between the 1976 influenza vaccination campaign and Guillain–Barré Syndrome and its implications for the post- and parainfectious complications of COVID-19 and COVID-19 vaccination; and (3) potential applications of scientific techniques developed in the wake of the human immunodeficiency virus pandemic to the study of postacute sequelae of COVID-19.



Publikationsverlauf

Artikel online veröffentlicht:
10. April 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Pandemics that changed history. Accessed April 19, 2022 at: https://www.history.com/topics/middle-ages/pandemics-timeline
  • 2 WHO coronavirus dashboard. Accessed April 19, 2022 at: https://covid19.who.int/
  • 3 McEntire CRS, Song KW, McInnis RP. et al. Neurologic manifestations of the World Health Organization's list of pandemic and epidemic diseases. Front Neurol 2021; 12: 634827
  • 4 Mao L, Jin H, Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77 (06) 683-690
  • 5 Nath A. Neurologic manifestations of severe acute respiratory syndrome coronavirus 2 infection. Continuum (Minneap Minn) 2021; 27 (04) 1051-1065
  • 6 Chou SH, Beghi E, Helbok R. et al; GCS-NeuroCOVID Consortium and ENERGY Consortium. Global incidence of neurological manifestations among patients hospitalized with COVID-19-a report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw Open 2021; 4 (05) e2112131
  • 7 Spanish flu. Accessed April 19, 2022 at: https://www.history.com/topics/world-war-i/1918-flu-pandemic
  • 8 Erkoreka A. Origins of the Spanish influenza pandemic (1918-1920) and its relation to the First World War. J Mol Genet Med 2009; 3 (02) 190-194
  • 9 Hoffman LA, Vilensky JA. Encephalitis lethargica: 100 years after the epidemic. Brain 2017; 140 (08) 2246-2251
  • 10 Reid AH, McCall S, Henry JM, Taubenberger JK. Experimenting on the past: the enigma of von Economo's encephalitis lethargica. J Neuropathol Exp Neurol 2001; 60 (07) 663-670
  • 11 Ravenholt RT, Foege WH. 1918 influenza, encephalitis lethargica, parkinsonism. Lancet 1982; 2 (8303): 860-864
  • 12 Berger JR, Vilensky JA. Encephalitis lethargica (von Economo's encephalitis). Handb Clin Neurol 2014; 123: 745-761
  • 13 Dale RC, Church AJ, Surtees RA. et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 2004; 127 (Pt 1): 21-33
  • 14 Dale RC, Irani SR, Brilot F. et al. N-methyl-D-aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Ann Neurol 2009; 66 (05) 704-709
  • 15 Anderson LL, Vilensky JA, Duvoisin RC. Review: neuropathology of acute phase encephalitis lethargica: a review of cases from the epidemic period. Neuropathol Appl Neurobiol 2009; 35 (05) 462-472
  • 16 Polage CR, Petti CA. Assessment of the utility of viral culture of cerebrospinal fluid. Clin Infect Dis 2006; 43 (12) 1578-1579
  • 17 Fujimoto S, Kobayashi M, Uemura O. et al. PCR on cerebrospinal fluid to show influenza-associated acute encephalopathy or encephalitis. Lancet 1998; 352 (9131): 873-875
  • 18 Dourmashkin RR, Dunn G, Castano V, McCall SA. Evidence for an enterovirus as the cause of encephalitis lethargica. BMC Infect Dis 2012; 12: 136
  • 19 Dickman MS. von Economo encephalitis. Arch Neurol 2001; 58 (10) 1696-1698
  • 20 Casals J, Elizan TS, Yahr MD. Postencephalitic parkinsonism–a review. J Neural Transm (Vienna) 1998; 105 (6–7): 645-676
  • 21 McCall S, Henry JM, Reid AH, Taubenberger JK. Influenza RNA not detected in archival brain tissues from acute encephalitis lethargica cases or in postencephalitic Parkinson cases. J Neuropathol Exp Neurol 2001; 60 (07) 696-704
  • 22 Tumpey TM, Basler CF, Aguilar PV. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005; 310 (5745): 77-80
  • 23 Toplak N, Avcin T. Influenza and autoimmunity. Ann N Y Acad Sci 2009; 1173: 619-626
  • 24 Howard RS, Lees AJ. Encephalitis lethargica. A report of four recent cases. Brain 1987; 110 (Pt 1): 19-33
  • 25 Lopez-Alberola R, Georgiou M, Sfakianakis GN, Singer C, Papapetropoulos S. Contemporary encephalitis lethargica: phenotype, laboratory findings and treatment outcomes. J Neurol 2009; 256 (03) 396-404
  • 26 Toovey S, Jick SS, Meier CR. Parkinson's disease or Parkinson symptoms following seasonal influenza. Influenza Other Respir Viruses 2011; 5 (05) 328-333
  • 27 McCall S, Vilensky JA, Gilman S, Taubenberger JK. The relationship between encephalitis lethargica and influenza: a critical analysis. J Neurovirol 2008; 14 (03) 177-185
  • 28 Jang H, Boltz D, Sturm-Ramirez K. et al. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci U S A 2009; 106 (33) 14063-14068
  • 29 Sadasivan S, Zanin M, O'Brien K, Schultz-Cherry S, Smeyne RJ. Induction of microglia activation after infection with the non-neurotropic A/CA/04/2009 H1N1 influenza virus. PLoS One 2015; 10 (04) e0124047
  • 30 Limphaibool N, Iwanowski P, Holstad MJV, Kobylarek D, Kozubski W. Infectious etiologies of parkinsonism: pathomechanisms and clinical implications. Front Neurol 2019; 10: 652
  • 31 Chen R, Wang K, Yu J. et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol 2021; 11: 573095
  • 32 Kroker K. Encephalitis lethargica: last century's long haulers?. CMAJ 2021; 193 (37) E1468-E1470
  • 33 Rao AR, Hidayathullah SM, Hegde K, Adhikari P. Parkinsonism: an emerging post COVID sequelae. IDCases 2022; 27: e01388
  • 34 Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 2021; 8 (05) 416-427
  • 35 Brundin P, Nath A, Beckham JD. Is COVID-19 a perfect storm for Parkinson's disease?. Trends Neurosci 2020; 43 (12) 931-933
  • 36 Normandin E, Holroyd KB, Collens SI. et al. Intrathecal inflammatory responses in the absence of SARS-CoV-2 nucleic acid in the CSF of COVID-19 hospitalized patients. J Neurol Sci 2021; 430: 120023
  • 37 Solomon IH, Normandin E, Bhattacharyya S. et al. Neuropathological features of Covid-19. N Engl J Med 2020; 383 (10) 989-992
  • 38 Song E, Bartley CM, Chow RD. et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med 2021; 2 (05) 100288
  • 39 Wijdicks EFM. Historical lessons from twentieth-century pandemics due to respiratory viruses. Neurocrit Care 2020; 33 (02) 591-596
  • 40 Spudich S, Nath A. Nervous system consequences of COVID-19. Science 2022; 375 (6578): 267-269
  • 41 Schonberger LB, Bregman DJ, Sullivan-Bolyai JZ. et al. Guillain-Barre syndrome following vaccination in the National Influenza Immunization Program, United States, 1976–1977. Am J Epidemiol 1979; 110 (02) 105-123
  • 42 Nelson KE. Invited commentary: Influenza vaccine and Guillain-Barre syndrome–is there a risk?. Am J Epidemiol 2012; 175 (11) 1129-1132
  • 43 Kurland LT, Wiederholt WC, Kirkpatrick JW, Potter HG, Armstrong P. Swine influenza vaccine and Guillain-Barré syndrome. Epidemic or artifact?. Arch Neurol 1985; 42 (11) 1089-1090
  • 44 Salmon DA, Proschan M, Forshee R. et al; H1N1 GBS Meta-Analysis Working Group. Association between Guillain-Barré syndrome and influenza A (H1N1) 2009 monovalent inactivated vaccines in the USA: a meta-analysis. Lancet 2013; 381 (9876): 1461-1468
  • 45 Haber P, DeStefano F, Angulo FJ. et al. Guillain-Barré syndrome following influenza vaccination. JAMA 2004; 292 (20) 2478-2481
  • 46 Stowe J, Andrews N, Wise L, Miller E. Investigation of the temporal association of Guillain-Barre syndrome with influenza vaccine and influenzalike illness using the United Kingdom General Practice Research Database. Am J Epidemiol 2009; 169 (03) 382-388
  • 47 Vellozzi C, Iqbal S, Broder K. Guillain-Barre syndrome, influenza, and influenza vaccination: the epidemiologic evidence. Clin Infect Dis 2014; 58 (08) 1149-1155
  • 48 Keddie S, Pakpoor J, Mousele C. et al. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain 2021; 144 (02) 682-693
  • 49 Patone M, Handunnetthi L, Saatci D. et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med 2021; 27 (12) 2144-2153
  • 50 Márquez Loza AM, Holroyd KB, Johnson SA, Pilgrim DM, Amato AA. Guillain- Barré syndrome in the placebo and active arms of a COVID-19 vaccine clinical trial: temporal associations do not imply causality. Neurology 2021:10.1212/WNL.0000000000011881
  • 51 García-Grimshaw M, Michel-Chávez A, Vera-Zertuche JM. et al. Guillain-Barré syndrome is infrequent among recipients of the BNT162b2 mRNA COVID-19 vaccine. Clin Immunol 2021; 230: 108818
  • 52 Woo EJ, Mba-Jonas A, Dimova RB, Alimchandani M, Zinderman CE, Nair N. Association of receipt of the Ad26.COV2.S COVID-19 vaccine with presumptive Guillain-Barré syndrome, February-July 2021. JAMA 2021; 326 (16) 1606-1613
  • 53 Holroyd KB, Vishnevetsky A, Srinivasan M, Saylor D. Neurologic complications of acute HIV infection. Curr Treat Options Infect Dis 2020; 12 (03) 227-242
  • 54 Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis 2013; 13 (11) 976-986
  • 55 Saylor D, Dickens AM, Sacktor N. et al. HIV-associated neurocognitive disorder - pathogenesis and prospects for treatment. Nat Rev Neurol 2016; 12 (05) 309
  • 56 Stefanou MI, Palaiodimou L, Bakola E. et al. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis 2022; 13: 20 406223221076890
  • 57 Becker JH, Lin JJ, Doernberg M. et al. Assessment of cognitive function in patients after COVID-19 infection. JAMA Netw Open 2021; 4 (10) e2130645
  • 58 Phillips S, Williams MA. Confronting our next national health disaster - long-haul Covid. N Engl J Med 2021; 385 (07) 577-579
  • 59 Nightingale S. Cognitive sequelae from COVID-19: lessons from the HIV field. Neurology. Available at: https://www.neurology.org/cognitive-sequelae-covid-19-lessons-hiv-field
  • 60 Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog 2011; 7 (10) e1002286
  • 61 Guedj E, Campion JY, Dudouet P. et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging 2021; 48 (09) 2823-2833
  • 62 Spudich SS, Nilsson AC, Lollo ND. et al. Cerebrospinal fluid HIV infection and pleocytosis: relation to systemic infection and antiretroviral treatment. BMC Infect Dis 2005; 5: 98
  • 63 Yuan L, Qiao L, Wei F. et al. Cytokines in CSF correlate with HIV-associated neurocognitive disorders in the post-HAART era in China. J Neurovirol 2013; 19 (02) 144-149
  • 64 Hellmuth J, Fletcher JL, Valcour V. et al; SEARCH 010/RV254 Study Group. Neurologic signs and symptoms frequently manifest in acute HIV infection. Neurology 2016; 87 (02) 148-154
  • 65 Kallianpur KJ, Jahanshad N, Sailasuta N. et al; SEARCH010/RV254 Study Group. Regional brain volumetric changes despite 2 years of treatment initiated during acute HIV infection. AIDS 2020; 34 (03) 415-426
  • 66 Zayyad Z, Spudich S. Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 2015; 12 (01) 16-24