Semin Neurol 2023; 43(02): 260-267
DOI: 10.1055/s-0043-1767712
Review Article

The Olfactory Dysfunction of COVID-19

Richard L. Doty
1   Department of Otorhinolaryngology: Head and Neck Surgery, Smell and Taste Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
› Author Affiliations

Abstract

Until the coronavirus disease 2019 (COVID-19) pandemic, much of the scientific community and the general public lacked an appreciation of the impact of decreased smell function on everyday life, including the importance of this sensory system for safety, nutrition, and overall quality of life. It is now well established that the SARS-CoV-2 virus inflicts measurable but frequently reversible smell loss during its acute phase. Indeed, in many studies such loss is the most common symptom of COVID-19. Permanent or long-term deficits (i.e., deficits lasting over a year) may occur in up to 30% of those who have been infected, including the development of odor distortions (dysosmias; parosmias). This review presents up-to-date information on the epidemiology, severity, and pathophysiology of COVID-19-related smell dysfunction, including its association with psychological and neurological sequelae.



Publication History

Article published online:
17 May 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Doty RL, Hawkes CH. Chemosensory dysfunction in neurodegenerative diseases. Handb Clin Neurol 2019; 164: 325-360
  • 2 Devanand DP, Lee S, Manly J. et al. Olfactory identification deficits and increased mortality in the community. Ann Neurol 2015; 78 (03) 401-411
  • 3 Pinto JM, Wroblewski KE, Kern DW, Schumm LP, McClintock MK. Olfactory dysfunction predicts 5-year mortality in older adults. PLoS One 2014; 9 (10) e107541
  • 4 Brandão Neto D, Fornazieri MA, Dib C. et al. Chemosensory dysfunction in COVID-19: prevalences, recovery rates, and clinical associations on a large Brazilian sample. Otolaryngol Head Neck Surg 2021; 164 (03) 512-518
  • 5 Doty RL. Olfactory dysfunction in COVID-19: pathology and long-term implications for brain health. Trends Mol Med 2022; 28 (09) 781-794
  • 6 Williams FMK, Freidin MB, Mangino M. et al. Self-reported symptoms of COVID-19, including symptoms most predictive of SARS-CoV-2 infection, are heritable. Twin Res Hum Genet 2020; 23 (06) 316-321
  • 7 von Bartheld CS, Hagen MM, Butowt R. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. ACS Chem Neurosci 2020; 11 (19) 2944-2961
  • 8 Soter A, Kim J, Jackman A, Tourbier I, Kaul A, Doty RL. Accuracy of self-report in detecting taste dysfunction. Laryngoscope 2008; 118 (04) 611-617
  • 9 Wehling E, Nordin S, Espeseth T, Reinvang I, Lundervold AJ. Unawareness of olfactory dysfunction and its association with cognitive functioning in middle aged and old adults. Arch Clin Neuropsychol 2011; 26 (03) 260-269
  • 10 Doty RL, Reyes PF, Gregor T. Presence of both odor identification and detection deficits in Alzheimer's disease. Brain Res Bull 1987; 18 (05) 597-600
  • 11 Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 1988; 38 (08) 1237-1244
  • 12 Nordin S, Monsch AU, Murphy C. Unawareness of smell loss in normal aging and Alzheimer's disease: discrepancy between self-reported and diagnosed smell sensitivity. J Gerontol B Psychol Sci Soc Sci 1995; 50 (04) 187-192
  • 13 Singer-Cornelius T, Cornelius J, Oberle M, Metternich FU, Brockmeier SJ. Objective gustatory and olfactory dysfunction in COVID-19 patients: a prospective cross-sectional study. Eur Arch Otorhinolaryngol 2021; 278 (09) 3325-3332
  • 14 Moein ST, Hashemian SM, Mansourafshar B, Khorram-Tousi A, Tabarsi P, Doty RL. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol 2020; 10 (08) 944-950
  • 15 Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 (02) 271-280.e8
  • 16 Gudowska-Sawczuk M, Mroczko B. The role of neuropilin-1 (NRP-1) in SARS-CoV-2 infection: review. J Clin Med 2021; 10 (13) 10
  • 17 Wang K, Chen W, Zhang Z. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 2020; 5 (01) 283
  • 18 Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier?. Brain Behav Immun 2021; 95: 7-14
  • 19 Moein ST, Hashemian SM, Tabarsi P, Doty RL. Prevalence and reversibility of smell dysfunction measured psychophysically in a cohort of COVID-19 patients. Int Forum Allergy Rhinol 2020; 10 (10) 1127-1135
  • 20 Ercoli T, Masala C, Pinna I. et al. Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurol Sci 2021; 42 (12) 4921-4926
  • 21 Ohla K, Veldhuizen MG, Green T. et al. A follow-up on quantitative and qualitative olfactory dysfunction and other symptoms in patients recovering from COVID-19 smell loss. Rhinology 2022
  • 22 Jafar A, Lasso A, Shorr R, Hutton B, Kilty S. Olfactory recovery following infection with COVID-19: a systematic review. PLoS One 2021; 16 (11) e0259321
  • 23 Boscolo-Rizzo P, Guida F, Polesel J. et al. Self-reported smell and taste recovery in coronavirus disease 2019 patients: a one-year prospective study. Eur Arch Otorhinolaryngol 2022; 279 (01) 515-520
  • 24 Callejón-Leblic MA, Martín-Jiménez DI, Moreno-Luna R. et al. Analysis of prevalence and predictive factors of long-lasting olfactory and gustatory dysfunction in COVID-19 patients. Life (Basel) 2022; 12 (08) 1256
  • 25 McWilliams MP, Coelho DH, Reiter ER, Costanzo RM. Recovery from COVID-19 smell loss: two-years of follow up. Am J Otolaryngol 2022; 43 (05) 103607
  • 26 Coelho DH, Reiter ER, French E, Costanzo RM. Decreasing incidence of chemosensory changes by COVID-19 variant. Otolaryngol Head Neck Surg 2022; doi: 1945998221097656
  • 27 Menni C, Valdes AM, Polidori L. et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet 2022; 399 (10335): 1618-1624
  • 28 Burdach KJ, Doty RL. The effects of mouth movements, swallowing, and spitting on retronasal odor perception. Physiol Behav 1987; 41 (04) 353-356
  • 29 Doty RL. Cranial Nerve I: Olfaction. In: Goltz CG, Pappert EJ. eds. Textbook of Clinical Neurology. Philadelphia: W.B. Saunders; 1998: 90-101
  • 30 Zielinski BS, Getchell ML, Wenokur RL, Getchell TV. Ultrastructural localization and identification of adrenergic and cholinergic nerve terminals in the olfactory mucosa. Anat Rec 1989; 225 (03) 232-245
  • 31 Vogalis F, Hegg CC, Lucero MT. Ionic conductances in sustentacular cells of the mouse olfactory epithelium. J Physiol 2005; 562 (Pt 3): 785-799
  • 32 Montani G, Tonelli S, Elsaesser R, Paysan J, Tirindelli R. Neuropeptide Y in the olfactory microvillar cells. Eur J Neurosci 2006; 24 (01) 20-24
  • 33 Mackay-Sim A, St. John J, Schwob JE. Neurogenesis in the adult olfactory epithelium. In: Doty RL. ed. Handbook of Olfaction and Gustation. Hoboken: John Wiley & Sons; 2015: 133-156
  • 34 Doty RL, Kamath V. The influences of age on olfaction: a review. Front Psychol 2014; 5: 20
  • 35 Smithson LJ, Kawaja MD. Microglial/macrophage cells in mammalian olfactory nerve fascicles. J Neurosci Res 2010; 88 (04) 858-865
  • 36 Panni P, Ferguson IA, Beacham I, Mackay-Sim A, Ekberg JA, St John JA. Phagocytosis of bacteria by olfactory ensheathing cells and Schwann cells. Neurosci Lett 2013; 539: 65-70
  • 37 Glezer I, Malnic B. Olfactory receptor function. Handb Clin Neurol 2019; 164: 67-78
  • 38 Halász N, Shepherd GM. Neurochemistry of the vertebrate olfactory bulb. Neuroscience 1983; 10 (03) 579-619
  • 39 Wesson DW, Wilson DA. Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more?. Neurosci Biobehav Rev 2011; 35 (03) 655-668
  • 40 Cleland TA, Linster C. Central olfactory structures. Handb Clin Neurol 2019; 164: 79-96
  • 41 Wilson DA, Chapuis J, Sullivan RM. Cortical olfactory anatomy and physiology. In: Doty RL. ed. Handbook of Olfaction and Gustation. Hoboken, NJ: John Wiley & Sons; 2015: 209-223
  • 42 Frere JJ, Serafini RA, Pryce KD. et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. Sci Transl Med 2022; 14 (664) eabq3059
  • 43 Lechien JR, Chiesa-Estomba CM, Hans S, Barillari MR, Jouffe L, Saussez S. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann Intern Med 2020; 173 (08) 672-675
  • 44 Eliezer M, Hamel AL, Houdart E. et al. Loss of smell in patients with COVID-19: MRI data reveal a transient edema of the olfactory clefts. Neurology 2020; 95 (23) e3145-e3152
  • 45 Workman AD, Jafari A, Xiao R, Bleier BS. Airborne aerosol olfactory deposition contributes to anosmia in COVID-19. PLoS One 2021; 16 (02) e0244127
  • 46 Tekcan Sanli DE, Altundag A, Yıldırım D, Kandemirli SG, Sanli AN. Comparison of olfactory cleft width and volumes in patients with COVID-19 anosmia and COVID-19 cases without anosmia. ORL J Otorhinolaryngol Relat Spec 2022; 84 (01) 1-9
  • 47 Zugaj M, van Ditzhuijzen NS, Golebski K, Fokkens WJ. The effect of coronaviruses on olfaction: systematic review. Rhinology 2021; 59 (03) 226-235
  • 48 Khan M, Yoo SJ, Clijsters M. et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021; 184 (24) 5932-5949.e15
  • 49 Zazhytska M, Kodra A, Hoagland DA. et al. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell 2022; 185 (06) 1052-1064.e12
  • 50 Altunisik E, Baykan AH, Sahin S, Aydin E, Erturk SM. Quantitative analysis of the olfactory system in COVID-19: an MR imaging study. AJNR Am J Neuroradiol 2021; 42 (12) 2207-2214
  • 51 Schriever VA, Reither N, Gerber J, Iannilli E, Hummel T. Olfactory bulb volume in smokers. Exp Brain Res 2013; 225 (02) 153-157
  • 52 Doty RL, Yousem DM, Pham LT, Kreshak AA, Geckle R, Lee WW. Olfactory dysfunction in patients with head trauma. Arch Neurol 1997; 54 (09) 1131-1140
  • 53 Thomann PA, Dos Santos V, Toro P, Schönknecht P, Essig M, Schröder J. Reduced olfactory bulb and tract volume in early Alzheimer's disease – a MRI study. Neurobiol Aging 2009; 30 (05) 838-841
  • 54 Wang J, You H, Liu JF, Ni DF, Zhang ZX, Guan J. Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. AJNR Am J Neuroradiol 2011; 32 (04) 677-681
  • 55 Goektas O, Schmidt F, Bohner G. et al. Olfactory bulb volume and olfactory function in patients with multiple sclerosis. Rhinology 2011; 49 (02) 221-226
  • 56 Turetsky BI, Moberg PJ, Owzar K, Johnson SC, Doty RL, Gur RE. Anatomical and physiological abnormalities of the olfactory system in patients with schizophrenia: a multimodal approach. Biol Psychiatry 2003; 53: 175S-175S
  • 57 Rombaux P, Potier H, Bertrand B, Duprez T, Hummel T. Olfactory bulb volume in patients with sinonasal disease. Am J Rhinol 2008; 22 (06) 598-601
  • 58 Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol 2018; 92 (17) 92
  • 59 Donegani MI, Miceli A, Pardini M. et al. Brain metabolic correlates of persistent olfactory dysfunction after SARS-CoV2 infection. Biomedicines 2021; 9 (3): 287
  • 60 Douaud G, Lee S, Alfaro-Almagro F. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022; 604 (7907): 697-707
  • 61 Bitter T, Gudziol H, Burmeister HP, Mentzel HJ, Guntinas-Lichius O, Gaser C. Anosmia leads to a loss of gray matter in cortical brain areas. Chem Senses 2010; 35 (05) 407-415
  • 62 Pellegrino R, Farruggia MC, Small DM, Veldhuizen MG. Post-traumatic olfactory loss and brain response beyond olfactory cortex. Sci Rep 2021; 11 (01) 4043
  • 63 Gao X, Su B, Sun Z, Xu L, Wei Y, Wu D. Patterns of gray and white matter volume alterations in patients with post-traumatic anosmia: a voxel-based morphometry study. Front Neurol 2022; 13: 690760
  • 64 Alghamdi HY, Alrashed AM, Jawhari AM, Abdel-Moneim AS. Neuropsychiatric symptoms in post-COVID-19 long haulers. Acta Neuropsychiatr 2022; 34 (06) 318-329
  • 65 Catton G, Gardner A. Relationship between recovery from COVID-19-induced smell loss and general and oral health factors. Medicina (Kaunas) 2022; 58 (02) 58
  • 66 Khan AM, Lee J, Rammaha T. et al. Natural trajectory of recovery of COVID-19 associated olfactory loss. Am J Otolaryngol 2022; 43 (05) 103572
  • 67 Algahtani SN, Alzarroug AF, Alghamdi HK, Algahtani HK, Alsywina NB, Bin Abdulrahman KA. Investigation on the factors associated with the persistence of anosmia and ageusia in Saudi COVID-19 patients. Int J Environ Res Public Health 2022; 19 (03) 19
  • 68 Shahrvini B, Prajapati DP, Said M. et al. Risk factors and characteristics associated with persistent smell loss in coronavirus disease 2019 (COVID-19) patients. Int Forum Allergy Rhinol 2021; 11 (08) 1280-1282
  • 69 London B, Nabet B, Fisher AR, White B, Sammel MD, Doty RL. Predictors of prognosis in patients with olfactory disturbance. Ann Neurol 2008; 63 (02) 159-166
  • 70 Schou TM, Joca S, Wegener G, Bay-Richter C. Psychiatric and neuropsychiatric sequelae of COVID-19 - a systematic review. Brain Behav Immun 2021; 97: 328-348
  • 71 Voruz P, Jacot de Alcântara I, Nuber-Champier A. et al. Frequency of abnormally low neuropsychological scores in post-COVID-19 syndrome: the Geneva COVID-COG cohort. Arch Clin Neuropsychol 2023; 38 (01) 1-11
  • 72 Coelho DH, Reiter ER, Budd SG, Shin Y, Kons ZA, Costanzo RM. Quality of life and safety impact of COVID-19 associated smell and taste disturbances. Am J Otolaryngol 2021; 42 (04) 103001
  • 73 Yom-Tov E, Lekkas D, Jacobson NC. Association of COVID19-induced anosmia and ageusia with depression and suicidal ideation. J Affect Disord Rep 2021; 5: 100156
  • 74 Dudine L, Canaletti C, Giudici F. et al. Investigation on the loss of taste and smell and consequent psychological effects: a cross-sectional study on healthcare workers who contracted the COVID-19 infection. Front Public Health 2021; 9: 666442
  • 75 Wilson DA, Chapuis J, Sullivan RM. Cortical olfactory anatomy and physiology. In: Doty RL. ed. Handbook of Olfaction and Gustation. Hoboken NJ: John Wiley & Sons; 2015: 209-226