Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000142.xml
Frauenheilkunde up2date 2017; 11(05): 479-498
DOI: 10.1055/s-0043-123627
DOI: 10.1055/s-0043-123627
Interdisziplinäre Themen
Epigenetik: Einfluss auf die fetale Entwicklung
Further Information
Publication History
Publication Date:
08 January 2018 (online)
„Der Mensch ist mehr als die Summe seiner Gene“. Wurde dieser Satz im Jahr 2002 kurz vor Abschluss des Humanen Genomprojekts (HGP) noch unter ethischen und moralphilosophischen Gesichtspunkten diskutiert, wurde danach schnell klar, dass er auch eine tiefergreifende wissenschaftliche Bedeutung für die gesamte Biologie hat als vorher angenommen.
-
Literatur
- 1 Waddington C. The Epigenotype. Int J of Epidemiol 2012; 41: 10-13
- 2 FAO/WHO. Expert Consultation on human vitamin and mineral requirements: Folate and folic acid. Rom: FAO; 2001: 53-62
- 3 Gordon L, Joo J, Powell J. et al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 2012; 22: 1395-1406
- 4 Matsuda M, Yasutomi M. Inhibition of cephalic neural tube closure by 5-azacytidine in neurulating rat embryos in vitro. Anat Embryol 1992; 185: 217-223
- 5 Hackett J, Surani M. DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond B Biol Sci 2013; 368(1609): 20110328
- 6 Gicquel C, Gaston V, Mandelbaum J. et al. In-vitro-fertilization may increase the risk of Beckwith-Wiedemann Syndrome related to the abnormal imprinting of the KCNQ10 T gene. Am J Hum Genet 2003; 72: 1338-1341
- 7 Zhao J, Goldberg J, Bremner J. et al. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 2012; 61: 542-546
- 8 Radtke K, Ruf M, Gunter H. et al. Transgenerational impact of intimate partner violence on methylation in the promotor of the glucocorticoid receptor. Transl Psychiatry 2011; 1: e21
- 9 Crudo A, Petropoulos S, Moisiadis V. et al. Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology 2012; 153: 3269-3283
- 10 Markunas C, Xu Z, Harlid S. et al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2014; 122: 1147-1153
- 11 Bauer T, Trump S, Ishaque N. et al. Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol Syst Biol 2016; 12: 861
- 12 Herberth G, Bauer M, Gasch M. et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 2014; 133: 543-550
- 13 Yeo M, Berglund K, Hanna M. et al. Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promotor. Proc Natl Acad Sci USA 2013; 110: 4315-4320
- 14 Hales C, Barker D. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologica 1992; 35: 595-601
- 15 Tobi E, Lumey L, Talens R. et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009; 18: 4046-4053
- 16 Painter R, Osmond C, Gluckman P. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 2008; 115: 1243-1249
- 17 Plagemann A, Harder T, Brunn M. et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 2009; 587: 4963-4976
- 18 Guénard F, Deshaies Y, Cianflone K. et al. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 2013; 110: 11439-11444
- 19 Bilbo S, Tsang V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J 2010; 24: 2104-2115
- 20 Stirm L, Salih J, Häring H. et al. Epigenetische Veränderungen im Gestationsdiabetes. Diabetologie und Stoffwechsel 2015; 10: P191
- 21 Lyko F, Foret S, Kucharski R. et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 2010; 8: e1000506
- 22 Hollingsworth J, Maruoka S, Boon K. et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 2008; 118: 3462-3469
- 23 Waterland R, Jirtle R. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23: 5293-5300
- 24 Dolinoy D. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 2008; 66: 7-11
- 25 Junaid M, Kuizon S, Cardona J. et al. Folic acid supplementation dysregulates gene expression in lymphoblastoid cellsimplications in nutrition. Biochem Biophys Res Commun 2011; 412: 688-692
- 26 Cho C, Sánchez-Hernández D, Reza-López S. et al. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring. Epigenetics 2013; 8: 710-719
- 27 Brenseke B, Prater M, Bahamonde J. et al. Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J Pregnancy 2013; 368-461
- 28 Richardson S, Daniels C, Gillman M. et al. Society: Donʼt blame the mothers. Nature 2014; 512: 131-132
- 29 Lambrot R, Xu C, Saint-Phar S. et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun 2013; 4: 28-89
- 30 Rodgers A, Morgan C, Bronson S. et al. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress regulation. J Neurosci 2013; 33: 9003-9012
- 31 Mychasiuk R, Harker A, Ilnytskyy S. et al. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience 2013; 241: 100-105