Horm Metab Res 2018; 50(05): 414-421
DOI: 10.1055/s-0043-123470
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

Similar Aquaporin9 and MAPK Expression Profiles in the Liver of Types 1 and 2 Diabetes Mellitus

Jiaojiao Hou*
1   Department of Anatomy, Chongqing Medical University, Chongqing, P. R. China
,
Yuan Li*
1   Department of Anatomy, Chongqing Medical University, Chongqing, P. R. China
,
Xüxia Ren*
1   Department of Anatomy, Chongqing Medical University, Chongqing, P. R. China
2   Department of Anatomy, Chongqing Medical and Health School, Chongqing, P. R. China
,
Fei Gao
3   Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
,
Yuqin Chen
1   Department of Anatomy, Chongqing Medical University, Chongqing, P. R. China
,
Yaoxing Yi
1   Department of Anatomy, Chongqing Medical University, Chongqing, P. R. China
,
Lili Kang
1   Department of Anatomy, Chongqing Medical University, Chongqing, P. R. China
,
Yürui Luo
1   Department of Anatomy, Chongqing Medical University, Chongqing, P. R. China
,
Mei Yang
1   Department of Anatomy, Chongqing Medical University, Chongqing, P. R. China
› Author Affiliations
Further Information

Publication History

received 18 October 2017

accepted 14 November 2017

Publication Date:
09 March 2018 (online)

Abstract

Aquaporin-9 (AQP9) is an aquaglyceroporin that biophysically conducts water, glycerol, and other small solutes. AQP9 is expressed in hepatocytes on the sinusoidal surfaces of hepatocyte plates in the liver, where it is considered responsible for the glycerol uptake in gluconeogenesis. However, limited information is available on the expression and regulating mechanism of AQP9 in different hyperglycemia models. Thus, this study examined the expression patterns of AQP9 and mitogen-activated protein kinase (MAPK) in Types 1 and 2 diabetes mellitus (DM) to clarify the roles and regulating mechanism of AQP9 in gluconeogenesis. Compared with the control group, the AQP9 expression significantly increased in both Types 1 and 2 DM, and the increased expression was associated with the activation of phosphorylated JNK (p-JNK) and the inhibition of phosphorylated p38 (p-p38). By contrast, phosphorylated ERK remained stable in the liver with Type 1 or 2 DM. These effects could be reversed by insulin treatment. That is, insulin downregulated AQP9 by inhibiting p-JNK and activating p-p38. The upregulation of AQP9 could be involved in gluconeogenesis and co-regulated by the JNK and p38 MAPK pathway in both Types 1 and 2 DM.

* The first three authors contributed equally to this manuscript


 
  • References

  • 1 Mattson JS, Cerutis DR. Diabetes mellitus: A review of the literature and dental implications. Compend Contin Educ Dent 2001; 22: 757-760 762, 764 passim; quiz 773
  • 2 Vilarino-Garcia T, Perez-Perez A, Dietrich V, Fernandez-Sanchez M, Guadix P, Duenas JL, Varone CL, Damiano AE, Sanchez-Margalet V. Increased expression of aquaporin 9 in trophoblast from gestational diabetic patients. Horm Metab Res 2016; 48: 535-539
  • 3 Gonen T, Walz T. The structure of aquaporins. Q Rev Biophys 2006; 39: 361-396
  • 4 Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol 1999; 277: F685-F696
  • 5 Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S. Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 1998; 244: 268-274
  • 6 Brisson D, Vohl MC, St-Pierre J, Hudson TJ, Gaudet D. Glycerol: a neglected variable in metabolic processes?. BioEssays 2001; 23: 534-542
  • 7 Hibuse T, Maeda N, Nagasawa A, Funahashi T. Aquaporins and glycerol metabolism. Biochim Biophys Acta 2006; 1758: 1004-1011
  • 8 Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H, Maeda N, Matsuda M, Nagaretani H, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 2002; 51: 2915-2921
  • 9 Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153-183
  • 10 Perez-Perez A, Guadix P, Maymo J, Duenas JL, Varone C, Fernandez-Sanchez M, Sanchez-Margalet V. Insulin and Leptin Signaling in Placenta from Gestational Diabetic Subjects. Horm Metab Res 2016; 48: 62-69
  • 11 Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37-40
  • 12 Arima H, Yamamoto N, Sobue K, Umenishi F, Tada T, Katsuya H, Asai K. Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem 2003; 278: 44525-44534
  • 13 Wei X, Ren X, Jiang R, Li H, Gao F, Chen Y, Hou J, Liu X, Sun S, Yang M. Phosphorylation of p38 MAPK mediates aquaporin 9 expression in rat brains during permanent focal cerebral ischaemia. J Mol Histol 2015; 46: 273-281
  • 14 Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X, He X, Yan N. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 2009; 583: 2009-2014
  • 15 Wang C, Ming W, Yan D, Zhang C, Yang M, Liu Y, Zhang Y, Guo B, Wan Y, Xing J. Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate). Bioresour Technol 2014; 156: 6-13
  • 16 Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA. Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 1998; 273: 24737-24743
  • 17 Peroni O, Large V, Beylot M. Measuring gluconeogenesis with [2-13C]glycerol and mass isotopomer distribution analysis of glucose. Am J Physiol 1995; 269: E516-E523
  • 18 Rojek AM, Skowronski MT, Fuchtbauer EM, Fuchtbauer AC, Fenton RA, Agre P, Frokiaer J, Nielsen S. Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci U S A 2007; 104: 3609-3614
  • 19 Ko SB, Uchida S, Naruse S, Kuwahara M, Ishibashi K, Marumo F, Hayakawa T, Sasaki S. Cloning and functional expression of rAOP9L a new member of aquaporin family from rat liver. Biochem Mol Biol Int 1999; 47: 309-318
  • 20 Yang M, Gao F, Liu H, Yu WH, Zhuo F, Qiu GP, Ran JH, Sun SQ. Hyperosmotic induction of aquaporin expression in rat astrocytes through a different MAPK pathway. J Cell Biochem 2013; 114: 111-119
  • 21 Yamamoto N, Sobue K, Fujita M, Katsuya H, Asai K. Differential regulation of aquaporin-5 and -9 expression in astrocytes by protein kinase A. Brain Res Mol Brain Res 2002; 104: 96-102
  • 22 Yamamoto N, Sobue K, Miyachi T, Inagaki M, Miura Y, Katsuya H, Asai K. Differential regulation of aquaporin expression in astrocytes by protein kinase C. Brain Res Mol Brain Res 2001; 95: 110-116
  • 23 Liu H, Mei ZC, Xiao X. [Effects of insulin and LY294002 inhibitors of PI3K on the regulations and expression of aquaporin 9 in normal liver cells]. Chin J Hepatol 2010; 18: 455-458
  • 24 Yokoyama Y, Iguchi K, Usui S, Hirano K. AMP-activated protein kinase modulates the gene expression of aquaporin 9 via forkhead box a2. Arch Biochem Biophys 2011; 515: 80-88
  • 25 Nicchia GP, Frigeri A, Nico B, Ribatti D, Svelto M. Tissue distribution and membrane localization of aquaporin-9 water channel: evidence for sex-linked differences in liver. J Histochem Cytochem 2001; 49: 1547-1556
  • 26 Gu LY, Qiu LW, Chen XF, Lu L, Mei ZC. Oleic acid-induced hepatic steatosis is coupled with downregulation of aquaporin 3 and upregulation of aquaporin 9 via activation of p38 signaling. Horm Metab Res 2015; 47: 259-264
  • 27 American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37 (Suppl. 01) S81-S90
  • 28 Sulochana KN, Rajesh M, Ramakrishnan S. Insulin receptor tyrosine kinase activity in monocytes of type 2 diabetes mellitus patients receiving oral L-lysine. Indian J Biochem Biophys 2001; 38: 331-334
  • 29 Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, Matsuda M, Maeda N, Nagaretani H, Kihara S, Kurachi Y, Nakamura T, Funahashi T, Matsuzawa Y. Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem/FEBS 2002; 269: 1814-1826
  • 30 Rodriguez A, Gena P, Mendez-Gimenez L, Rosito A, Valenti V, Rotellar F, Sola I, Moncada R, Silva C, Svelto M, Salvador J, Calamita G, Fruhbeck G. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int J Obes 2014; 38: 1213-1220
  • 31 Hussain MA, Stratakis C, Kirschner L. Prkar1a in the regulation of insulin secretion. Horm Metab Res 2012; 44: 759-765
  • 32 Petyuk VA, Qian WJ, Hinault C, Gritsenko MA, Singhal M, Monroe ME, Camp 2nd DG, Kulkarni RN, Smith RD. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues. J Proteome Res 2008; 7: 3114-3126
  • 33 Choi YJ, Choi SE, Ha ES, Kang Y, Han SJ, Kim DJ, Lee KW, Kim HJ. Extracellular visfatin activates gluconeogenesis in HepG2 cells through the classical PKA/CREB-dependent pathway. Horm Metab Res 2014; 46: 233-239