Anästhesiol Intensivmed Notfallmed Schmerzther 2018; 53(04): 296-305
DOI: 10.1055/s-0043-121622
Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Die Bedeutung der Hämolyse in Anästhesie und Intensivmedizin

The Relevance of Hemolysis in Anesthesia and Intensive Care Medicine
Jan A. Graw
,
David M. Baron
,
Roland C.E. Francis
Further Information

Publication History

Publication Date:
09 May 2018 (online)

Zusammenfassung

Die intravasale Hämolyse mit erhöhten Plasmakonzentrationen von zellfreiem Hämoglobin tritt nicht nur bei hämolytischen Erkrankungen auf – sie ist auch bei der Transfusion von Blutkonserven sowie bei Patienten mit ARDS, Sepsis oder kardiopulmonalem Bypass für den Krankheitsverlauf von Bedeutung. Dieser Beitrag möchte den klinisch tätigen Anästhesisten für die Relevanz der Hämolyse sowie deren Prävention und Früherkennung sensibilisieren.

Abstract

Hemolysis leads to an increase of circulating intravascular cell-free hemoglobin. Increased plasma concentrations of cell-free hemoglobin are relevant in critically ill patients because cell-free hemoglobin causes vasoconstriction by depletion of endothelial nitric oxide, oxidative stress, and inflammation. Furthermore, cell-free hemoglobin contributes to tissue injuries such as renal failure and intestinal mucosa damage after cardiac surgery. High concentrations of cell-free hemoglobin are associated with an increased mortality in patients with sepsis. Currently, it is unclear if hemolysis associated with transfusion of packed red blood cells that have been stored for prolonged periods of time is relevant for the clinical outcome. However, humans possess plasma proteins haptoglobin and hemopexin which bind to plasma hemoglobin and cell-free heme, respectively. The haptoglobin-hemoglobin and hemopexin-heme complexes are then eliminated from the plasma by hepatic or splenic uptake.

Kernaussagen
  • Hämolyse bewirkt einen Anstieg von frei im Plasma zirkulierendem Hämoglobin.

  • Erhöhte Plasmakonzentrationen von zellfreiem Hämoglobin sind besonders bei Intensivpatienten relevant, weil sie zu Vasokonstriktion führen (Depletion von endothelial generiertem NO), oxidativen Stress induzieren und Inflammationsreaktionen verstärken.

  • Endorganschäden im Zusammenhang mit zellfreiem Hämoglobin betreffen z. B. Nierenversagen und Schädigungen der Darmschleimhaut bei Patienten nach kardiochirurgischen Eingriffen.

  • Eine hohe Mortalitätsrate von Patienten mit Sepsis ist mit gleichzeitig erhöhten Plasmakonzentrationen von freiem Hämoglobin assoziiert. Dabei ist zum gegenwärtigen Zeitpunkt unklar, ob bei Patienten mit Sepsis zwischen Mortalität und erhöhten Plasmakonzentrationen freien Hämoglobins ein Kausalzusammenhang besteht.

  • Die klinische Relevanz der Hämolyse, die im Rahmen einer Transfusion von prolongiert gelagerten Erythrozytenkonzentraten auftritt, ist aktuell unklar.

  • Mit Haptoglobin und Hämopexin besitzt der menschliche Körper 2 Proteine, die zellfreies Hämoglobin bzw. freies Häm binden und aus dem Plasma eliminieren können.

 
  • Literatur

  • 1 Schaer DJ, Buehler PW, Alayash AI. et al. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 2013; 121: 1276-1284
  • 2 Baek JH, DʼAgnillo F, Vallelian F. et al. Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy. J Clin Invest 2012; 122: 1444-1458
  • 3 Cortes-Puch I, Wang D, Sun J. et al. Washing older blood units before transfusion reduces plasma iron and improves outcomes in experimental canine pneumonia. Blood 2014; 123: 1403-1411
  • 4 Graw JA, Mayeur C, Rosales I. et al. Haptoglobin or hemopexin therapy prevents acute adverse effects of resuscitation after prolonged storage of red cells. Circulation 2016; 134: 945-960
  • 5 Larsen R, Gozzelino R, Jeney V. et al. A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med 2010; 2: 51ra71
  • 6 Muenster S, Beloiartsev A, Yu B. et al. Exposure of stored packed erythrocytes to nitric oxide prevents transfusion-associated pulmonary hypertension. Anesthesiology 2016; 125: 952-963
  • 7 Vinchi F, De Franceschi L, Ghigo A. et al. Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation 2013; 127: 1317-1329
  • 8 Belcher JD, Chen C, Nguyen J. et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 2014; 123: 377-390
  • 9 Schaer CA, Deuel JW, Schildknecht D. et al. Haptoglobin preserves vascular nitric oxide signaling during hemolysis. Am J Respir Crit Care Med 2016; 193: 1111-1122
  • 10 [Anonymous] Felix Hoppe-Seyler (1825–1895) physiological chemist. JAMA 1970; 211: 493-494
  • 11 Lipiski M, Deuel JW, Baek JH. et al. Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid Redox Signal 2013; 19: 1619-1633
  • 12 Nakai K, Sakuma I, Ohta T. et al. Permeability characteristics of hemoglobin derivatives across cultured endothelial cell monolayers. J Lab Clin Med 1998; 132: 313-319
  • 13 Balla J, Vercellotti GM, Jeney V. et al. Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid Redox Signal 2007; 9: 2119-2137
  • 14 Weiskopf RB. Hemoglobin-based oxygen carriers: disclosed history and the way ahead: the relativity of safety. Anesth Analg 2014; 119: 758-760
  • 15 Donadee CL, Gladwin MT. Hemodialysis hyperhemolysis. A novel mechanism of endothelial dysfunction and cardiovascular risk?. J Am Coll Cardiol 2010; 55: 460-462
  • 16 Donadee C, Raat NJ, Kanias T. et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 2011; 124: 465-476
  • 17 Villagra J, Shiva S, Hunter LA. et al. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 2007; 110: 2166-2172
  • 18 Balla G, Jacob HS, Eaton JW. et al. Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb 1991; 11: 1700-1711
  • 19 Jeney V, Balla J, Yachie A. et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood 2002; 100: 879-887
  • 20 Santoro AM, Lo Giudice MC, DʼUrso A. et al. Cationic porphyrins are reversible proteasome inhibitors. J Am Chem Soc 2012; 134: 10451-10457
  • 21 Lin T, Kwak YH, Sammy F. et al. Synergistic inflammation is induced by blood degradation products with microbial Toll-like receptor agonists and is blocked by hemopexin. J Infect Dis 2010; 202: 624-632
  • 22 Liang X, Lin T, Sun G. et al. Hemopexin down-regulates LPS-induced proinflammatory cytokines from macrophages. J Leukoc Biol 2009; 86: 229-235
  • 23 Hod EA, Brittenham GM, Billote GB. et al. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrin-bound iron. Blood 2011; 118: 6675-6682
  • 24 Hod EA, Zhang N, Sokol SA. et al. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood 2010; 115: 4284-4292
  • 25 Nielsen MJ, Moestrup SK. Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging. Blood 2009; 114: 764-771
  • 26 Hwang PK, Greer J. Interaction between hemoglobin subunits in the hemoglobin. haptoglobin complex. J Biol Chem 1980; 255: 3038-3041
  • 27 Wicher KB, Fries E. Haptoglobin, a hemoglobin-binding plasma protein, is present in bony fish and mammals but not in frog and chicken. Proc Natl Acad Sci U S A 2006; 103: 4168-4173
  • 28 Bunn HF, Jandl JH. Exchange of heme among hemoglobins and between hemoglobin and albumin. J Biol Chem 1968; 243: 465-475
  • 29 Thomsen JH, Etzerodt A, Svendsen P. et al. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxid Med Cell Longev 2013; 2013: 523652
  • 30 Satoh T, Satoh H, Iwahara S. et al. Roles of heme iron-coordinating histidine residues of human hemopexin expressed in baculovirus-infected insect cells. Proc Natl Acad Sci U S A 1994; 91: 8423-8427
  • 31 Wicher KB, Fries E. Evolutionary aspects of hemoglobin scavengers. Antioxid Redox Signal 2010; 12: 249-259
  • 32 Hvidberg V, Maniecki MB, Jacobsen C. et al. Identification of the receptor scavenging hemopexin-heme complexes. Blood 2005; 106: 2572-2579
  • 33 Abboud MR, Musallam KM. Sickle cell disease at the dawn of the molecular era. Hemoglobin 2009; 33 (Suppl. 01) S93-S106
  • 34 Olivieri NF. The beta-thalassemias. N Engl J Med 1999; 341: 99-109
  • 35 Gladwin MT, Sachdev V, Jison ML. et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med 2004; 350: 886-895
  • 36 Bunn HF, Nathan DG, Dover GJ. et al. Pulmonary hypertension and nitric oxide depletion in sickle cell disease. Blood 2010; 116: 687-692
  • 37 Mathew R, Huang J, Wu JM. et al. Hematological disorders and pulmonary hypertension. World J Cardiol 2016; 8: 703-718
  • 38 Muller-Eberhard U, Javid J, Liem HH. et al. Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 1968; 32: 811-815
  • 39 Belcher JD, Mahaseth H, Welch TE. et al. Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am J Physiol Heart Circ Physiol 2005; 288: H2715-2725
  • 40 Belcher JD, Mahaseth H, Welch TE. et al. Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice. J Clin Invest 2006; 116: 808-816
  • 41 Gramaglia I, Sobolewski P, Meays D. et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med 2006; 12: 1417-1422
  • 42 Serghides L, Kim H, Lu Z. et al. Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS One 2011; 6: e27714
  • 43 Wang D, Sun J, Solomon SB. et al. Transfusion of older stored blood and risk of death: a meta-analysis. Transfusion 2012; 52: 1184-1195
  • 44 Bundesärztekammer. Richtlinie zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Richtlinie Hämotherapie). Aufgestellt gemäß §§ 12a und 18 Transfusionsgesetz von der Bundesärztekammer im Einvernehmen mit dem Paul-Ehrlich-Institut. Gesamtnovelle 2017. BAnz AT 06.11.2017 B5.
  • 45 Bennett-Guerrero E, Veldman TH, Doctor A. et al. Evolution of adverse changes in stored RBCs. Proc Natl Acad Sci U S A 2007; 104: 17063-17068
  • 46 Gao Y, Lv L, Liu S. et al. Elevated levels of thrombin-generating microparticles in stored red blood cells. Vox Sang 2013; 105: 11-17
  • 47 Cata JP, Wang H, Gottumukkala V. et al. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br J Anaesth 2013; 110: 690-701
  • 48 Silliman CC, Moore EE, Kelher MR. et al. Identification of lipids that accumulate during the routine storage of prestorage leukoreduced red blood cells and cause acute lung injury. Transfusion 2011; 51: 2549-2554
  • 49 Sparrow RL, Patton KA. Supernatant from stored red blood cell primes inflammatory cells: influence of prestorage white cell reduction. Transfusion 2004; 44: 722-730
  • 50 Koch CG, Li L, Sessler DI. et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med 2008; 358: 1229-1239
  • 51 Lacroix J, Hebert PC, Fergusson DA. et al. ABLE Investigators; Canadian Critical Care Trials Group. Age of transfused blood in critically ill adults. N Engl J Med 2015; 372: 1410-1418
  • 52 Steiner ME, Ness PM, Assmann SF. et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. N Engl J Med 2015; 372: 1419-1429
  • 53 Heddle NM, Cook RJ, Arnold DM. et al. Effect of short-term vs. long-term blood storage on mortality after transfusion. N Engl J Med 2016; 375: 1937-1945
  • 54 Cooper DJ, McQuilten ZK, Nichol A. et al. TRANSFUSE Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group. Age of red cells for transfusion and outcomes in critically ill adults. N Engl J Med 2017; 377: 1858-1867
  • 55 Rapido F, Brittenham GM, Bandyopadhyay S. et al. Prolonged red cell storage before transfusion increases extravascular hemolysis. J Clin Invest 2017; 127: 375-382
  • 56 Vermeulen Windsant IC, de Wit NC, Sertorio JT. et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol 2014; 5: 340
  • 57 Zallen G, Offner PJ, Moore EE. et al. Age of transfused blood is an independent risk factor for postinjury multiple organ failure. Am J Surg 1999; 178: 570-572
  • 58 Berra L, Pinciroli R, Stowell CO. et al. Autologous transfusion of stored red blood cells increases pulmonary artery pressure. Am J Respir Crit Care Med 2014; 190: 800-807
  • 59 Baron DM, Yu B, Lei C. et al. Pulmonary hypertension in lambs transfused with stored blood is prevented by breathing nitric oxide. Anesthesiology 2012; 116: 637-647
  • 60 Vermeulen Windsant IC, Hanssen SJ, Buurman WA. et al. Cardiovascular surgery and organ damage: time to reconsider the role of hemolysis. J Thorac Cardiovasc Surg 2011; 142: 1-11
  • 61 Vermeulen Windsant IC, Snoeijs MG, Hanssen SJ. et al. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney Int 2010; 77: 913-920
  • 62 Rezoagli E, Ichinose F, Strelow S. et al. Pulmonary and systemic vascular resistances after cardiopulmonary bypass: role of hemolysis. J Cardiothorac Vasc Anesth 2017; 31: 505-515
  • 63 Wetz AJ, Richardt EM, Schotola H. et al. Haptoglobin and free haemoglobin during cardiac surgery-is there a link to acute kidney injury?. Anaesth Intensive Care 2017; 45: 58-66
  • 64 Billings 4th FT, Ball SK, Roberts 2nd LJ. et al. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med 2011; 50: 1480-1487
  • 65 Janz DR, Bastarache JA, Peterson JF. et al. Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: an observational study. Crit Care Med 2013; 41: 784-790
  • 66 Adamzik M, Hamburger T, Petrat F. et al. Free hemoglobin concentration in severe sepsis: methods of measurement and prediction of outcome. Crit Care 2012; 16: R125
  • 67 Lin T, Maita D, Thundivalappil SR. et al. Hemopexin in severe inflammation and infection: mouse models and human diseases. Crit Care 2015; 19: 166
  • 68 Janz DR, Bastarache JA, Sills G. et al. Association between haptoglobin, hemopexin and mortality in adults with sepsis. Crit Care 2013; 17: R272
  • 69 Shaver CM, Upchurch CP, Janz DR. et al. Cell-free hemoglobin: a novel mediator of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 310: L532-541
  • 70 Dumont LJ, AuBuchon JP. Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion 2008; 48: 1053-1060
  • 71 Yu B, Raher MJ, Volpato GP. et al. Inhaled nitric oxide enables artificial blood transfusion without hypertension. Circulation 2008; 117: 1982-1990
  • 72 Baron DM, Beloiartsev A, Nakagawa A. et al. Adverse effects of hemorrhagic shock resuscitation with stored blood are ameliorated by inhaled nitric oxide in lambs*. Crit Care Med 2013; 41: 2492-2501
  • 73 Lei C, Yu B, Shahid M. et al. Inhaled nitric oxide attenuates the adverse effects of transfusing stored syngeneic erythrocytes in mice with endothelial dysfunction after hemorrhagic shock. Anesthesiology 2012; 117: 1190-1202
  • 74 Hashimoto K, Nomura K, Nakano M. et al. Pharmacological intervention for renal protection during cardiopulmonary bypass. Heart Vessels 1993; 8: 203-210
  • 75 Tanaka K, Kanamori Y, Sato T. et al. Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans 1991; 37: M482-M483
  • 76 Minneci PC, Deans KJ, Zhi H. et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest 2005; 115: 3409-3417
  • 77 Graw JA, Yu B, Rezoagli E. et al. Endothelial dysfunction inhibits the ability of haptoglobin to prevent hemoglobin-induced hypertension. Am J Physiol Heart Circ Physiol 2017; 312: H1120-H1127
  • 78 Toomasian JM, Bartlett RH. Hemolysis and ECMO pumps in the 21st century. Perfusion 2011; 26: 5-6
  • 79 Lubnow M, Philipp A, Foltan M. et al. Technical complications during veno-venous extracorporeal membrane oxygenation and their relevance predicting a system-exchange – retrospective analysis of 265 cases. PLoS One 2014; 9: e112316
  • 80 Muller MM, Geisen C, Zacharowski K. et al. Transfusion of packed red cells: indications, triggers and adverse events. Dtsch Arztebl Int 2015; 112: 507-517 quiz 518