neuroreha 2017; 09(04): 153-159
DOI: 10.1055/s-0043-120315
Schwerpunkt Robotik
Georg Thieme Verlag KG Stuttgart · New York

Roboter in der Neurorehabilitation

Jan Mehrholz
,
Simone Thomas
Further Information

Publication History

Publication Date:
08 December 2017 (online)

Zusammenfassung

Die robotergestützte Therapie erlebt einen regelrechten Aufschwung. Wie spiegelt sich ihr Einsatz in den Leitlinien der wichtigsten Gesellschaften wider? Welche Geräte werden idealerweise eingesetzt? Bei welchen Erkrankungen profitieren Patienten am deutlichsten vom Einsatz der modernen Technologie?

 
  • Literatur

  • 1 Asimov I. Runaround. Pages 40. In: Asimov I. ed. I, Robot. New York City: Doubleday; 1950: 40
  • 2 Calabro RA, Cacciola A, Berte F. et al. Robotic gait rehabilitation and substitution devices in neurological disorders: Where are we now?. Neurol Sci 2016; 4: 503-514
  • 3 Calabro RS, Russo M, Naro A. et al. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial. J Neurol Sci 2017; 25-30
  • 4 Carda S, Invernizzi M, Baricich A. et al. Robotic gait training is not superior to conventional treadmill training in Parkinson disease: A single-blind randomized controlled trial. Neurorehabil Neural Repair 2012; 9: 1027-1034
  • 5 Carpinella I, Cattaneo D, Bertoni R. et al. Robot training of upper limb in multiple sclerosis: Comparing protocols with or without manipulative task components. IEEE Trans Neural Syst Rehabil Eng 2012; 3: 351-360
  • 6 Cavallo F, Esposito D, Rovini E. et al. Preliminary evaluation of SensHand V1 in assessing motor skills performance in Parkinson disease. IEEE Int Conf Rehabil Robot 2013; 6650466
  • 7 Colombo G, Joerg M, Schreier R. et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000
  • 8 Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001
  • 9 da Silveira Carvalho I, Pinto SM, Chagas DDV. et al. Robotic gait training for individuals with cerebral palsy: A systematic review and meta-analysis. Arch Phys Med Rehabil. 2017
  • 10 de Ávila BEF, Angsantikul P, Li J. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Communications 2017; 1: 272
  • 11 DGN: Rehabilitation von sensomotorischen Störungen. In: Diener HC, Weimar C, Berlit P. et al., eds. Leitlinien für Diagnostik und Therapie in der Neurologie. Stuttgart: Thieme; 2012: 1051ff
  • 12 Dohle C, Tholen R, Wittenberg H. et al. Rehabilitation der Mobilität nach Schlaganfall (ReMoS). S2e-Leitlinie. Neurol Rehabil 2015; 7: 355-494
  • 13 Gandolfi M, Geroin C, Picelli A. et al. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: A randomized controlled trial. Front Hum Neurosci 2014; 318
  • 14 Geigle P, Kallins M. Exoskeleton-assisted walking for people with spinal cord injury. Arch Phys Med Rehabil 2017; 7: 1493-1495
  • 15 Graham AC. The Book of Lieh-tzŭ: A Classic of Tao. New York: Columbia University Press; 1960
  • 16 Harvey LA. Physiotherapy rehabilitation for people with spinal cord injuries. Journal of Physiotherapy 2016; 1: 4-11
  • 17 Hesse S, Schmidt H, Werner C. et al. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 2003; 6: 705-710
  • 18 Hesse S, Schulte-Tigges G, Konrad M. et al. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003; 6: 915-920
  • 19 Hesse S, Mehrholz J, Werner C. Robot-assisted upper and lower limb rehabilitation after stroke: Walking and arm/hand function. Dtsch Arztebl Int 2008; 18: 330-336
  • 20 Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 2010; 30
  • 21 Hesse S, Tomelleri C, Bardeleben A. et al. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients. J Rehabil Res Dev 2012; 4: 613-622
  • 22 Hill D. Mechanical engineering in the medieval near east. Scientific American 1991; 64-69
  • 23 Hill D. A history of engineering in classical and medieval times. London, New York: Routledge; 2013
  • 24 Humphrey J, Oleson J, Sherwood A. Greek and Roman technology: A sourcebook. Annotated translations of Greek and Latin texts and documents. London, New York: Routledge; 1998
  • 25 Krebs HI, Palazzolo JJ, Dipietro L. et al. Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Auton Robots. 2003
  • 26 Krebs HI, Caurin G, Battistella L. Rehabilitation robotics, orthotics and prosthetics for the upper extremity. In: Selzer M, Clarke S, Cohen L. et al., eds Textbook of Neural Repair and Rehabilitation. New York: Cambridge University Press; 2014: 177-197
  • 27 Krebs HI. On a unique fellow and a good friend: Celebrating the life of Stefan Hesse and his contributions to rehabilitation robotics, 1960–2016. NeuroRehabilitation 2017; 1: 1-3
  • 28 Lamers I, Maris A, Severijns D. et al. Upper limb rehabilitation in people with multiple sclerosis: A systematic review. Neurorehabil Neural Repair 2016; 8: 773-793
  • 29 Lang JE, Mannava S, Floyd AJ. et al. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br 2011; 10: 1296-1299
  • 30 Lee Y, Chen K, Ren Y. et al. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis. Mult Scler Relat Disord 2017; 65-70
  • 31 Lefmann S, Russo R, Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review. J Neuroeng Rehabil 2017; 1: 1
  • 32 Leon D, Cortes M, Elder J. et al. tDCS does not enhance the effects of robot-assisted gait training in patient with subacute stroke. Restor Neurol Neurosci 2017; Jul 6 DOI: 10.3233/RNN-170734
  • 33 Lo AC, Guarino PD, Richards LG. et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. The New England Journal of Medicine 2010; 19: 1772-1783
  • 34 Louie DR, Eng JJ, Lam T. Gait speed using powered robotic exoskeletons after spinal cord injury: A systematic review and correlational study. Journal of NeuroEngineering and Rehabilitation 2015; 1: 1-10
  • 35 Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: A scoping review. Journal of NeuroEngineering and Rehabilitation 2016; 1: 1-10
  • 36 Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst Reviews 2012; 11: CD006676
  • 37 Mehrholz J, Kugler J, Storch A. et al. Treadmill training for patients with Parkinson’s disease. Cochrane Database of Systematic Reviews 2015; 9 Art. No.: CD007830. DOI: 10.1002/14651858.CD007830.pub4
  • 38 Mehrholz J, Pohl M, Platz T. et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews 2015; 11 Art. No.: CD006876. DOI: 10.1002/14651858.CD006876.pub4
  • 39 Mehrholz J. Towards evidence-based practice of technology-based gait rehabilitation after stroke. Physiotherapy Research International 2016; 4: 201-202
  • 40 Mehrholz J, Kugler J, Storch A. et al. Treadmill training for patients with Parkinson’s disease. An abridged version of a Cochrane Review. Eur J Phys Rehabil Med 2016; 5: 704-713
  • 41 Mehrholz J, Elsner B, Thomas S. Elektromechanisches und roboterassistiertes Training der oberen Extremität. neuroreha 2017; 9: 160-166
  • 42 Mehrholz J, Harvey L, Thomas S. et al. Is body-weight supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord 2017; 55: 722-729
  • 43 Mehrholz J, Thomas S, Pohl M. et al. Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Reviews 2017; 5: CD006185
  • 44 Mehrholz J, Thomas S, Pohl M. et al. Electromechanical-assisted training for walking after stroke. An updated review. Stroke 2017; 8: e188-e189
  • 45 Meuleman J, van Asseldonk E, van Oort G. et al. LOPES II – Design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE Trans Neural Syst Rehabil Eng 2016; 3: 352-363
  • 46 Miguel Cruz A, Rios Rincon AM, Rodriguez Duenas WR. What does the literature say about using robots on children with disabilities?. Disabil Rehabil Assist Technol 2017; 5: 429-440
  • 47 Nam KY, Kim HJ, Kwon BS. et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review. Journal of NeuroEngineering and Rehabilitation 2017; 24
  • 48 Picelli A, Melotti C, Origano F. et al. Robot-assisted gait training in patients with Parkinson disease: A randomized controlled trial. Neurorehabil Neural Repair 2012; 4: 353-361
  • 49 Pilleri M, Weis L, Zabeo L. et al. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease. J Neurol Sci 2015; 1 –2 75-78
  • 50 Platz T. Die S2-Leitlinie „Rehabilitative Therapie bei Armparese nach Schlaganfall“ der Deutschen Gesellschaft für Neurorehabilitation. NeuroGeriatrie 2011; 8: 104-116
  • 51 Platz T. Practice Guidelines in Neurorehabilitation. Neurology International Open 2017; 03: E148-E152
  • 52 Pompa A, Morone G, Iosa M. et al. Does robot-assisted gait training improve ambulation in highly disabled multiple sclerosis people? A pilot randomized control trial. Mult Scler 2017; 5: 696-703
  • 53 Riener R. The Cybathlon promotes the development of assistive technology for people with physical disabilities. Journal of NeuroEngineering and Rehabilitation 2016; 1: 49
  • 54 Rodgers H, Shaw L, Bosomworth H. et al. Robot-assisted training for the upper limb after stroke (RATULS): Study protocol for a randomised controlled trial. Trials 2017; 1: 340
  • 55 Rong W, Li W, Pang M. et al. A neuromuscular electrical stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. Journal of NeuroEngineering and Rehabilitation 2017; 34
  • 56 Ruiz J, Labas MP, Triche EW. et al. Combination of robot-assisted and conventional body-weight-supported treadmill training improves gait in persons with multiple sclerosis: A pilot study. J Neurol Phys Ther 2013; 4: 187-193
  • 57 Schmidt H, Sorowka D, Hesse S. et al. Development of a robotic walking simulator for gait rehabilitation. Biomed Tech (Berl) 2003; 10: 281-286
  • 58 Schwartz I, Sajin A, Moreh E. et al. Robot-assisted gait training in multiple sclerosis patients: A randomized trial. Mult Scler 2012; 6: 881-890
  • 59 Severijns D, Octavia JR, Kerkhofs L. et al. Investigation of fatigability during repetitive robot-mediated arm training in people with multiple sclerosis. PLoS One 2015; 7: e0133729
  • 60 Simonetti D, Zollo L, Milighetti S. et al. Literature review on the effects of tDCS coupled with robotic therapy in post stroke upper limb rehabilitation. Front Hum Neurosci 2017; 268
  • 61 Singh I. Robotics in urological surgery: Review of current status and maneuverability, and comparison of robot-assisted and traditional laparoscopy. Computer Aided Surgery ISSN: 2011; 1: 38-45
  • 62 Straudi S, Benedetti MG, Venturini E. et al. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. NeuroRehabilitation 2013; 4: 555-563
  • 63 Straudi S, Fanciullacci C, Martinuzzi C. et al. The effects of robot-assisted gait training in progressive multiple sclerosis: A randomized controlled trial. Mult Scler 2016; 3: 373-384
  • 64 Straudi S, Manfredini F, Lamberti N. et al. The effectiveness of robot-assisted gait training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): Study protocol for a randomized controlled trial. Trials 2017; 1: 88
  • 65 Svinnen E, Lefeber N, Keersmaecker E, Kerckhofs E. Roboter-assistierte Gangrehabilitation bei Patienten mit Hirn- bzw. Rückenmarksverletzungen: Aktueller Stand und zukünftige Entwicklung. neuroreha 2017; 4 Ausgabe Roboter
  • 66 Swinnen E, Beckwee D, Pinte D. et al. Treadmill training in multiple sclerosis: Can body weight support or robot assistance provide added value? A systematic review. Mult Scler Int 2012; 240274
  • 67 Thiele E. Karel Čapek, Biografie. Leipzig Reclam; 1988
  • 68 Tomelleri C, Waldner A, Werner C. et al. Adaptive locomotor training on an end-effector gait robot: Evaluation of the ground reaction forces in different training conditions. IEEE Int Conf Rehabil Robot 2011; 5975492
  • 69 Valenti Soler M, Aguera-Ortiz L, Olazaran Rodriguez J. et al. Social robots in advanced dementia. Front Aging Neurosci 2015; 133
  • 70 Valentín-Gudiol M, Mattern-Baxter K, Girabent-Farrés M. et al. Treadmill interventions in children under six years of age at risk of neuromotor delay, Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd.; 2017
  • 71 Vaney C, Gattlen B, Lugon-Moulin V. et al. Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Repair 2012; 3: 212-221
  • 72 Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE. et al. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair 2017; 2: 107-121
  • 73 Winstein CJ, Stein J, Arena R. et al. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016; 6: e98-e169
  • 74 Xie X, Sun H, Zeng Q. et al. Do patients with multiple sclerosis derive more benefit from robot-assisted gait training compared with conventional walking therapy on motor function? A meta-analysis. Front Neurol 2017; 260