Klin Monbl Augenheilkd 2019; 236(10): 1170-1173
DOI: 10.1055/s-0043-118221
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Der Einsatz eines Mikrosensors in der Amblyopietherapie

The Use of a Microsensor in Therapy of Amblyopia
Kai Januschowski
1   Augenheilkunde, Universitätsaugenklinik, Eberhard-Karls-Universität Tübingen, Tübingen
,
Annekatrin Rickmann
2   Augenheilkunde, Knappschaftskrankenhaus Sulzbach/Saar, Sulzbach
,
Caroline Emmerich
2   Augenheilkunde, Knappschaftskrankenhaus Sulzbach/Saar, Sulzbach
,
Annegret Abaza
1   Augenheilkunde, Universitätsaugenklinik, Eberhard-Karls-Universität Tübingen, Tübingen
,
Till Edward Bechtold
3   Zahnheilkunde, Eberhard-Karls-Universität Tübingen, Tübingen
,
Timm Cornelius Schott
3   Zahnheilkunde, Eberhard-Karls-Universität Tübingen, Tübingen
,
Charlotte Schramm
1   Augenheilkunde, Universitätsaugenklinik, Eberhard-Karls-Universität Tübingen, Tübingen
› Author Affiliations
Further Information

Publication History

eingereicht 18 January 2017

akzeptiert 29 May 2017

Publication Date:
08 November 2017 (online)

Zusammenfassung

Amblyopie stellt eine der häufigsten kindlichen Sehstörungen dar. Die aktuelle Standardtherapie der Amblyopie besteht in der Abdeckung (Okklusion) des besseren Auges durch ein Pflaster, um das schlechtere Auge zu fördern und eine kortikale Suppression des schwächeren Auges zu verhindern. Entscheidend für den Therapieerfolg ist dabei die Compliance. Es gibt inzwischen einen nur 8 × 12 mm kleinen Tragezeitmesser (TheraMon-Chip, MC Technology GmbH). Dieser Sensor ermöglicht eine einfache objektive Dokumentation der Compliance sowohl an Pflastern als auch an Brillen. Die Sensoren messen in vorgegebenen Zeitabständen die Umgebungstemperatur. Durch die spezifische Temperatur kann auf die Tragezeit rückgeschlossen werden und damit die Therapieüberwachung objektiv ermöglicht werden. Daher könnte ein neuer studienorientierter Ansatz mit dem TheraMon-Sensor zur Überwachung der Compliance und folglich eventuellen Optimierungen von definierten Trageprotokollen in der Amblyopietherapie zielführend sein.

Abstract

Amblyopia is one of the most common visual disorders in children. Current therapy of amblyopia is an occlusion therapy of the stronger eye with an occlusion patch until the best corrected visual acuity is achieved. The success of occlusion therapy essentially depends on the compliance of the children and their parents. There is a commercially available 8 × 12 mm small TheraMon microsensor (TheraMon-Chip, MC Technology GmbH). This sensor allows a simple objective documentation of the therapy compliance of patches and glasses. It samples the surrounding temperature in regular intervals. Due to the specific temperatures, it is possible to detect the time of application and, therefore, the compliance. Therefore, TheraMon microsensor could be a study-related approach for monitoring the compliance and further leading to possible improvement of application time protocols in amblyopia therapy.

 
  • Literatur

  • 1 Elflein HM, Fresenius S, Lamparter J. et al. The prevalence of amblyopia in Germany: data from the prospective, population-based Gutenberg Health Study. Dtsch Arztebl Int 2015; 112: 338-344
  • 2 Gusek-Schneider GC. [Severe amblyopia – literature review]. Klin Monatsbl Augenheilkd 2011; 228: 859-863
  • 3 Dean SE, Povey RC, Reeves J. Assessing interventions to increase compliance to patching treatment in children with amblyopia: a systematic review and meta-analysis. Br J Ophthalmol 2016; 100: 159-165
  • 4 Wu C, Hunter DG. Amblyopia: diagnostic and therapeutic options. Am J Ophthalmol 2006; 141: 175-184
  • 5 American Academy of Ophthalmology. Amblyopia preferred practice pattern. 2012 Im Internet: https://www.aao.org/preferred-practice-pattern/amblyopia-ppp-september-2012 Stand: 03.09.2017
  • 6 Berufsverband der Augenärzte e.V., DOG. Leitlinie 26a Amblyopie. 2010 Im Internet: http://www.augeninfo.de/leit/leit26a.pdf Stand: 03.09.2017
  • 7 Holmes JM, Kraker RT, Beck RW. et al. A randomized trial of prescribed patching regimens for treatment of severe amblyopia in children. Ophthalmology 2003; 110: 2075-2087
  • 8 Wallace DK, Lazar EL, Crouch 3rd ER. et al. Time course and predictors of amblyopia improvement with 2 hours of daily patching. JAMA Ophthalmol 2015; 133: 606-609
  • 9 Wallace MP, Stewart CE, Moseley MJ. et al. Compliance with occlusion therapy for childhood amblyopia. Invest Ophthalmol Vis Sci 2013; 54: 6158-6166
  • 10 Testa A, Castiglione F, Nardone OM. et al. Adherence in ulcerative colitis: an overview. Patient Prefer Adherence 2017; 11: 297-303
  • 11 Schäfer K, Ludwig B, Meyer-Gutknecht H. et al. Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation. Eur J Orthod 2015; 37: 73-80
  • 12 Stewart CE, Moseley MJ, Stephens DA. et al. Treatment dose-response in amblyopia therapy: the Monitored Occlusion Treatment of Amblyopia Study (MOTAS). Invest Ophthalmol Vis Sci 2004; 45: 3048-3054
  • 13 Paxton Ott DN, Galli J, Damarjian T. et al. A randomized trial of amblyz TM liquid crystal occlusion glasses vs. traditional patching for treatment of moderate unilateral amblyopia in children: 6-month outcome. ARVO, 2016, Denver, Colorado.
  • 14 Stewart CE, Stephens DA, Fielder AR. et al. Objectively monitored patching regimens for treatment of amblyopia: randomised trial. BMJ 2007; 335: 707
  • 15 Li SL, Jost RM, Morale SE. et al. Binocular iPad treatment of amblyopia for lasting improvement of visual acuity. JAMA Ophthalmol 2015; 133: 479-480
  • 16 Handa T, Ishikawa H, Shoji N. et al. Modified iPad for treatment of amblyopia: a preliminary study. J AAPOS 2015; 19: 552-554
  • 17 Stewart CE, Stephens DA, Fielder AR. et al. Modeling dose-response in amblyopia: toward a child-specific treatment plan. Invest Ophthalmol Vis Sci 2007; 48: 2589-2594
  • 18 Fronius M, Chopovska Y, Nolden J. et al. Occlusion treatment for amblyopia: assessing the performance of the electronic occlusion dose monitor. Strabismus 2006; 14: 65-70
  • 19 Schott TC. Einbau eines Mikrosensors in herausnehmbare kieferorthopädische Geräte. Quintessenz Zahntechnik 2011; 37: 898-904
  • 20 Schott TC, Ludwig B. Microelectronic wear-time documentation of removable orthodontic devices detects heterogeneous wear behavior and individualizes treatment planning. Am J Orthod Dentofacial Orthop 2014; 146: 155-160
  • 21 Schott TC, Ludwig B, Glasl BA. et al. A microsensor for monitoring removable-appliance wear. J Clin Orthod 2011; 45: 518-520 quiz 516
  • 22 Schott TC, Schlipf C, Glasl B. et al. Quantification of patient compliance with Hawley retainers and removable functional appliances during the retention phase. Am J Orthod Dentofacial Orthop 2013; 144: 533-540
  • 23 Schott TC, Ludwig B. Quantification of wear-time adherence of removable appliances in young orthodontic patients in relation to their BMI: a preliminary study. Patient Prefer Adherence 2014; 8: 1587-1595
  • 24 Schott TC, Göz G. Applicative characteristics of new microelectronic sensors Smart Retainer® and TheraMon® for measuring wear time. J Orofac Orthop 2010; 71: 339-347
  • 25 Schramm C, Abaza A, Blumenstock G. et al. Limitations of the TheraMon®-microsensor in monitoring occlusion therapy. Acta Ophthalmol 2016; 94: e753-e756
  • 26 Januschowski K, Bechtold TE, Schott TC. et al. Measuring wearing times of glasses and ocular patches using a thermosensor device from orthodontics. Acta Ophthalmol 2013; 91: e635-e640
  • 27 Abaza A, Wahl G, Blumenstock G. et al. Measuring Objective monitoring of spectacle wearing using the TheraMon® microsensor. Curr Eye Res [under Revision].