Subscribe to RSS
DOI: 10.1055/s-0043-107754
Point-of-Care-Gerinnungsdiagnostik in der Neurochirurgie
Point-of-care Coagulation Testing in NeurosurgeryPublication History
Publication Date:
26 June 2018 (online)
Zusammenfassung
Gerinnungsstörungen können für neurochirurgische Patienten gravierende Auswirkungen auf den Krankheitsverlauf und das Outcome haben: Blutungskomplikationen können zu intrakraniellem Druckanstieg und Schädigung des Gehirns führen. Somit hat die Gerinnungsdiagnostik und ggf. -therapie hier einen hohen Stellenwert. Dieser Beitrag beleuchtet die Anwendung moderner Point-of-Care-Verfahren zur Gerinnungsdiagnostik bei neurochirurgischen Patienten.
Abstract
Disorders of the coagulation system can seriously impact the clinical course and outcome of neurosurgical patients. Due to the anatomical location of the central nervous system within the closed skull, bleeding complications can lead to devastating consequences such as an increase in intracranial pressure or enlargement of intracranial hematoma. Point-of-care (POC) devices for the testing of haemostatic parameters have been implemented in various fields of medicine. Major advantages of these devices are that results are available quickly and that analysis can be performed at the bedside, directly affecting patient management. POC devices allow identification of increased bleeding tendencies and therefore may enable an assessment of hemorrhagic risks in neurosurgical patients. Although data regarding the use of POC testing in neurosurgical patients are limited, they suggest that coagulation testing and hemostatic therapy using POC devices might have beneficial effects in this patient population. This article provides an overview of the application of point-of-care coagulation testing in clinical practice in neurosurgical patients.
-
Neurochirurgische Patienten sind durch Blutungskomplikationen besonders gefährdet.
-
Bei hohen perioperativen Blutverlusten nach neurochirurgischen Eingriffen sollten viskoelastische Verfahren zum Einsatz kommen.
-
Die Anwendung einer POC-Gerinnungsdiagnostik wird im Rahmen der Behandlung von Traumapatienten (mit SHT) auf Basis eines Expertenkonsenses in Leitlinien empfohlen.
-
Für Patienten mit einer ICB oder einem SDH unter OAK kann die POC-Gerinnungsdiagnostik sinnvoll sein, um eine frühzeitige hämostatische Therapie einzuleiten.
-
Zur Therapieüberwachung einer antithrombozytären Medikation nach neuroendovaskulären Verfahren kann der Einsatz der POC-Gerinnungsdiagnostik hilfreich sein.
-
Literatur
- 1 Ganter MT, Hofer CK. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth Analg 2008; 106: 1366-1375 doi:10.1213/ane.0b013e318168b367
- 2 Paniccia R, Priora R, Liotta AA. et al. Platelet function tests: a comparative review. Vasc Health Risk Manag 2015; 11: 133-148 doi:10.2147/vhrm.s44469
- 3 Beynon C, Wessels L, Unterberg AW. Point-of-care testing in neurosurgery. Semin Thromb Hemost 2017; 43: 416-422 doi:10.1055/s-0037-1599159
- 4 Kawano-Castillo J, Ward E, Elliott A. et al. Thrombelastography detects possible coagulation disturbance in patients with intracerebral hemorrhage with hematoma enlargement. Stroke 2014; 45: 683-688 doi:10.1161/strokeaha.113.003826
- 5 Rajajee V, Brown DM, Tuhrim S. Coagulation abnormalities following primary intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2004; 13: 47-51 doi:10.1016/j.jstrokecerebrovasdis.2004.01.002
- 6 Kumar M, Cao W, McDaniel JK. et al. Plasma ADAMTS13 activity and von Willebrand factor antigen and activity in patients with subarachnoid haemorrhage. Thromb Haemost 2017; 117: 691-699 doi:10.1160/th16-11-0834
- 7 Ikeda K, Asakura H, Futami K. et al. Coagulative and fibrinolytic activation in cerebrospinal fluid and plasma after subarachnoid hemorrhage. Neurosurgery 1997; 41: 344-349 discussion 349–350
- 8 Boluijt J, Meijers JC, Rinkel GJ. et al. Hemostasis and fibrinolysis in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review. J Cereb Blood Flow Metab 2015; 35: 724-733 doi:10.1038/jcbfm.2015.13
- 9 Ramchand P, Nyirjesy S, Frangos S. et al. Thromboelastography parameter predicts outcome after subarachnoid hemorrhage: an exploratory analysis. World Neurosurg 2016; 96: 215-221 doi:10.1016/j.wneu.2016.04.002
- 10 Frontera JA, Provencio JJ, Sehba FA. et al. The role of platelet activation and inflammation in early brain injury following subarachnoid hemorrhage. Neurocrit Care 2017; 26: 48-57 doi:10.1007/s12028-016-0292-4
- 11 Dorhout Mees SM, van den Bergh WM, Algra A. et al. Antiplatelet therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 2007; (04) CD006184 DOI: 10.1002/14651858.CD006184.pub2.
- 12 AWMF. S1 Leitlinie Subarachnoidalblutung. 2012 Im Internet: http://www.awmf.org/leitlinien/detail/ll/030-073.html Stand: 27.03.2018
- 13 Maegele M, Schochl H, Menovsky T. et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. Lancet Neurol 2017; 16: 630-647 doi:10.1016/s1474-4422(17)30197-7
- 14 Laroche M, Kutcher ME, Huang MC. et al. Coagulopathy after traumatic brain injury. Neurosurgery 2012; 70: 1334-1345 doi:10.1227/NEU.0b013e31824d179b
- 15 Chen H, Xue LX, Guo Y. et al. The influence of hemocoagulation disorders on the development of posttraumatic cerebral infarction and outcome in patients with moderate or severe head trauma. Biomed Res Int 2013; 2013: 685174 doi:10.1155/2013/685174
- 16 Greuters S, van den Berg A, Franschman G. et al. Acute and delayed mild coagulopathy are related to outcome in patients with isolated traumatic brain injury. Crit Care 2011; 15: R2 doi:10.1186/cc9399
- 17 Abdelmalik PA, Boorman DW, Tracy J. et al. Acute traumatic coagulopathy accompanying isolated traumatic brain injury is associated with worse long-term functional and cognitive outcomes. Neurocrit Care 2016; 24: 361-370 doi:10.1007/s12028-015-0191-0
- 18 Rao AJ, Laurie A, Hilliard C. et al. 185 The utility of thromboelastography for predicting the risk of progression of intracranial hemorrhage in traumatic brain injury patients. Neurosurgery 2016; 63 (Suppl. 01) 173-174 doi:10.1227/01.neu.0000489754.05157.93
- 19 Rossaint R, Bouillon B, Cerny V. et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care 2016; 20: 100 doi:10.1186/s13054-016-1265-x
- 20 Juratli TA, Zang B, Litz RJ. et al. Early hemorrhagic progression of traumatic brain contusions: frequency, correlation with coagulation disorders, and patient outcome: a prospective study. J Neurotrauma 2014; 31: 1521-1527 doi:10.1089/neu.2013.3241
- 21 Dekker SE, Duvekot A, de Vries HM. et al. Relationship between tissue perfusion and coagulopathy in traumatic brain injury. J Surg Res 2016; 205: 147-154 doi:10.1016/j.jss.2016.06.023
- 22 Castellino FJ, Chapman MP, Donahue DL. et al. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J Trauma Acute Care Surg 2014; 76: 1169-1176 doi:10.1097/ta.0000000000000216
- 23 Davis PK, Musunuru H, Walsh M. et al. Platelet dysfunction is an early marker for traumatic brain injury-induced coagulopathy. Neurocrit Care 2013; 18: 201-208 doi:10.1007/s12028-012-9745-6
- 24 Ramsey MT, Fabian TC, Shahan CP. et al. A prospective study of platelet function in trauma patients. J Trauma Acute Care Surg 2016; 80: 726-732 doi:10.1097/ta.0000000000001017 discussion 732–723
- 25 Briggs A, Gates JD, Kaufman RM. et al. Platelet dysfunction and platelet transfusion in traumatic brain injury. J Surg Res 2015; 193: 802-806 doi:10.1016/j.jss.2014.08.016
- 26 Connelly CR, Yonge JD, McCully SP. et al. Assessment of three point-of-care platelet function assays in adult trauma patients. J Surg Res 2017; 212: 260-269 doi:10.1016/j.jss.2017.01.008
- 27 AWMF. S3 Leitlinie Polytrauma/Schwerverletzten-Behandlung. 2016 Im Internet: http://www.awmf.org/leitlinien/detail/ll/012-019.html Stand: 27.03.2018
- 28 Maegele M, Inaba K, Rizoli S. et al. [Early viscoelasticity-based coagulation therapy for severely injured bleeding patients: Report of the consensus group on the consensus conference 2014 for formulation of S2k guidelines]. Anaesthesist 2015; 64: 778-794 doi:10.1007/s00101-015-0040-8
- 29 Schochl H, Voelckel W, Grassetto A. et al. Practical application of point-of-care coagulation testing to guide treatment decisions in trauma. J Trauma Acute Care Surg 2013; 74: 1587-1598 doi:10.1097/TA.0b013e31828c3171
- 30 Gonzalez E, Moore EE, Moore HB. et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg 2016; 263: 1051-1059 doi:10.1097/sla.0000000000001608
- 31 Wikkelso A, Wetterslev J, Moller AM. et al. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev 2016; (08) CD007871 DOI: 10.1002/14651858.CD007871.pub3.
- 32 Hunt H, Stanworth S, Curry N. et al. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma induced coagulopathy in adult trauma patients with bleeding. Cochrane Database Syst Rev 2015; (02) CD010438 DOI: 10.1002/14651858.CD010438.pub2.
- 33 Inaba K, Rizoli S, Veigas PV. et al. 2014 Consensus conference on viscoelastic test-based transfusion guidelines for early trauma resuscitation: Report of the panel. J Trauma Acute Care Surg 2015; 78: 1220-1229 doi:10.1097/ta.0000000000000657
- 34 Haas T, Goobie S, Spielmann N. et al. Improvements in patient blood management for pediatric craniosynostosis surgery using a ROTEM(®)-assisted strategy – feasibility and costs. Paediatr Anaesth 2014; 24: 774-780 doi:10.1111/pan.12341
- 35 Naik BI, Pajewski TN, Bogdonoff DI. et al. Rotational thromboelastometry-guided blood product management in major spine surgery. J Neurosurg Spine 2015; 23: 239-249 doi:10.3171/2014.12.spine14620
- 36 Kozek-Langenecker SA, Ahmed AB, Afshari A. et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: First update 2016. Eur J Anaesthesiol 2017; 34: 332-395 doi:10.1097/eja.0000000000000630
- 37 Won SY, Dubinski D, Bruder M. et al. Acute subdural hematoma in patients on oral anticoagulant therapy: management and outcome. Neurosurg Focus 2017; 43: E12 doi:10.3171/2017.8.focus17421
- 38 Boulouis G, Morotti A, Pasi M. et al. Outcome of intracerebral haemorrhage related to non-vitamin K antagonists oral anticoagulants versus vitamin K antagonists: a comprehensive systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018; 89: 263-270 doi:10.1136/jnnp-2017-316631
- 39 Lee SM, Park HS, Choi JH. et al. Location and characteristics of warfarin associated intracranial hemorrhage. J Cerebrovasc Endovasc Neurosurg 2014; 16: 184-192 doi:10.7461/jcen.2014.16.3.184
- 40 Hemphill 3rd JC, Greenberg SM, Anderson CS. et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015; 46: 2032-2060 doi:10.1161/str.0000000000000069
- 41 Beynon C, Jakobs M, Rizos T. et al. Rapid bedside coagulometry prior to urgent neurosurgical procedures in anticoagulated patients. Br J Neurosurg 2014; 28: 29-33 doi:10.3109/02688697.2013.869549
- 42 Rizos T, Jenetzky E, Herweh C. et al. Point-of-care reversal treatment in phenprocoumon-related intracerebral hemorrhage. Ann Neurol 2010; 67: 788-793 doi:10.1002/ana.21965
- 43 Rizos T, Jenetzky E, Herweh C. et al. Fast point-of-care coagulometer guided reversal of oral anticoagulation at the bedside hastens management of acute subdural hemorrhage. Neurocrit Care 2010; 13: 321-325 doi:10.1007/s12028-010-9443-1
- 44 Almutairi AR, Zhou L, Gellad WF. et al. Effectiveness and safety of non-vitamin K antagonist oral anticoagulants for atrial fibrillation and venous thromboembolism: a systematic review and meta-analyses. Clin Ther 2017; 39: 1456-1478.e36 doi:10.1016/j.clinthera.2017.05.358
- 45 Beynon C, Sakowitz OW, Storzinger D. et al. Intracranial haemorrhage in patients treated with direct oral anticoagulants. Thromb Res 2015; 136: 560-565 doi:10.1016/j.thromres.2015.07.001
- 46 Lindhoff-Last E. Direct oral anticoagulants (DOAC) – Management of emergency situations. Rationale and design of the RADOA-Registry. Hamostaseologie 2017; DOI: 10.5482/HAMO-16-11-0043.
- 47 Gosselin RC, Gosselin R, Douxfils J. et al. Clinical pearls: Laboratory assessments of direct oral anticoagulants (DOACS). Hamostaseologie 2017; DOI: 10.5482/HAMO-17-01-0002.
- 48 Ebner M, Birschmann I, Peter A. et al. Point-of-care testing for emergency assessment of coagulation in patients treated with direct oral anticoagulants. Crit Care 2017; 21: 32 doi:10.1186/s13054-017-1619-z
- 49 Maddox JM, Bogo PH, McGregor E. et al. Quality assurance for point-of-care testing of oral anticoagulation: a large-scale evaluation of the Hemochron Junior Signature Microcoagulation System. Int J Lab Hematol 2009; 31: 142-150 doi:10.1111/j.1751-553X.2007.01013.x
- 50 Ebner M, Peter A, Spencer C. et al. Point-of-care testing of coagulation in patients treated with non-vitamin K antagonist oral anticoagulants. Stroke 2015; 46: 2741-2747 doi:10.1161/strokeaha.115.010148
- 51 Schenk B, Goerke S, Beer R. et al. Four-factor prothrombin complex concentrate improves thrombin generation and prothrombin time in patients with bleeding complications related to rivaroxaban: a single-center pilot trial. Thromb J 2018; 16: 1 doi:10.1186/s12959-017-0158-9
- 52 Neyens R, Bohm N, Cearley M. et al. Dabigatran-associated subdural hemorrhage: using thromboelastography (TEG(®)) to guide decision-making. J Thromb Thrombolysis 2014; 37: 80-83 doi:10.1007/s11239-013-0933-9
- 53 Fabbri A, Servadei F, Marchesini G. et al. Antiplatelet therapy and the outcome of subjects with intracranial injury: the Italian SIMEU study. Crit Care 2013; 17: R53 doi:10.1186/cc12575
- 54 Prinz V, Finger T, Bayerl S. et al. High prevalence of pharmacologically induced platelet dysfunction in the acute setting of brain injury. Acta Neurochir (Wien) 2016; 158: 117-123 doi:10.1007/s00701-015-2645-8
- 55 Bachelani AM, Bautz JT, Sperry JL. et al. Assessment of platelet transfusion for reversal of aspirin after traumatic brain injury. Surgery 2011; 150: 836-843 doi:10.1016/j.surg.2011.07.059
- 56 Beynon C, Scherer M, Jakobs M. et al. Initial experiences with Multiplate® for rapid assessment of antiplatelet agent activity in neurosurgical emergencies. Clin Neurol Neurosurg 2013; 115: 2003-2008 doi:10.1016/j.clineuro.2013.06.002
- 57 Akins PT, Guppy KH, Sahrakar K. et al. Slippery platelet syndromes in subdural hematoma. Neurocrit Care 2010; 12: 375-381 doi:10.1007/s12028-010-9336-3
- 58 Goh C, Churilov L, Mitchell P. et al. Clopidogrel hyper-response and bleeding risk in neurointerventional procedures. AJNR Am J Neuroradiol 2013; 34: 721-726 doi:10.3174/ajnr.A3418
- 59 Delgado Almandoz JE, Kadkhodayan Y, Crandall BM. et al. Variability in initial response to standard clopidogrel therapy, delayed conversion to clopidogrel hyper-response, and associated thromboembolic and hemorrhagic complications in patients undergoing endovascular treatment of unruptured cerebral aneurysms. J Neurointerv Surg 2014; 6: 767-773 doi:10.1136/neurintsurg-2013-010976
- 60 Kass-Hout T, Alderazi YJ, Amuluru K. et al. Neurointerventional stenting and antiplatelet function testing: to do or not to do?. Interv Neurol 2015; 3: 184-189 doi:10.1159/000431261