Synthesis 2024; 56(17): 2614-2626
DOI: 10.1055/s-0042-1751575
short review

Stereospecific Palladium-Catalyzed Cross-Coupling of Alkylboron Compounds: A Short Account

Byeongdo Roh
,
Hong Geun Lee
This work was supported by the Creative-Pioneering Researchers Program, Seoul National University.


Abstract

Stereospecific approaches allow the introduction of a stereogenic center into complex organic molecules using optically active reagents. Among these, the Pd-catalyzed stereospecific cross-coupling of chiral alkylboron compounds stands out as a highly effective tool for organic synthesis. In parallel with advances in the development of borylation technology, the strategy has recently witnessed a growth in its applicability. This account aims to review the progress on Pd-catalyzed stereospecific B-alkyl Suzuki–Miyaura cross-coupling, tracing its evolution from early breakthroughs to the most recent advances.

1 Introduction

2 Cross-Coupling of 1° Alkylboron Compounds

3 Cross-Coupling of Benzylboron Compounds

4 Cross-Coupling of Allyl- and Propargylboron Compounds

5 Cross-Coupling of Other Types of Activated 2° Alkylboron Compounds

6 Cross-Coupling of Unactivated 2° Alkylboron Compounds

7 Conclusion and Outlook



Publication History

Received: 22 January 2024

Accepted after revision: 04 March 2024

Article published online:
20 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1b Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 1c Beletskaya IP, Alonso F, Tyurin V. Coord. Chem. Rev. 2019; 385: 137
    • 2a Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
    • 2b Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
    • 3a Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
    • 3b Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709
    • 5a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 5b Lovering F. Med. Chem. Commun. 2013; 4: 515
    • 5c Prosser KE, Stokes RW, Cohen SM. ACS Med. Chem. Lett. 2020; 11: 1292
  • 6 Miyaura N, Ishiyama T, Ishikawa M, Suzuki A. Tetrahedron Lett. 1986; 27: 6369
  • 7 Ridgway BH, Woerpel KA. J. Org. Chem. 1998; 63: 458
  • 8 Matos K, Soderquist JA. J. Org. Chem. 1998; 63: 461
  • 9 Imao D, Glasspoole BW, Laberge VS, Crudden CM. J. Am. Chem. Soc. 2009; 131: 5024
  • 10 Ohmura T, Awano T, Suginome M. J. Am. Chem. Soc. 2010; 132: 13191
  • 11 Li L, Zhao S, Joshi-Pangu A, Diane M, Biscoe MR. J. Am. Chem. Soc. 2014; 136: 14027
  • 12 Zhao S, Gensch T, Murray B, Niemeyer ZL, Sigman MS, Biscoe MR. Science 2018; 362: 670
  • 13 Roh B, Farah AO, Kim B, Feoktistova T, Moller F, Kim KD, Cheong PH.-Y, Lee HG. J. Am. Chem. Soc. 2023; 145: 7075
    • 14a Wang C.-Y, Derosa J, Biscoe MR. Chem. Sci. 2015; 6: 5105
    • 14b Leonori D, Aggarwal VK. Angew. Chem. Int. Ed. 2015; 54: 1082
    • 14c Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
    • 14d Rygus JP. G, Crudden CM. J. Am. Chem. Soc. 2017; 139: 18124
    • 14e Ma X, Murray B, Biscoe MR. Nat. Rev. Chem. 2020; 4: 584
  • 15 Diner C, Szabó KJ. J. Am. Chem. Soc. 2017; 139: 2

    • For representative reviews, see:
    • 16a Nallagonda R, Padala K, Masarwa A. Org. Biomol. Chem. 2018; 16: 1050
    • 16b Wu C, Wang J. Tetrahedron Lett. 2018; 59: 2128
    • 16c Miralles N, Maza RJ, Fernández E. Adv. Synth. Catal. 2018; 360: 1306
    • 16d Zhang C, Hu W, Morken JP. ACS Catal. 2021; 11: 10660
    • 16e Lee Y, Han S, Cho SH. Acc. Chem. Res. 2021; 54: 3917

      For representative reviews on borylation, see:
    • 17a Leonori D, Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
    • 17b Collins BS. L, Wilson CM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
    • 17c Friese FW, Studer A. Chem. Sci. 2019; 10: 8503
    • 17d Wang M, Shi Z. Chem. Rev. 2020; 120: 7348
    • 17e Tian Y.-M, Guo X.-N, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
    • 17f Hu J, Ferger M, Shi Z, Marder TB. Chem. Soc. Rev. 2021; 50: 13129
  • 18 Bock PL, Boschetto DM, Rasmussen JR, Demers JP, Whitesides GM. J. Am. Chem. Soc. 1974; 96: 2814
  • 19 Krizkova PM, Hammerschmidt F. Eur. J. Org. Chem. 2013; 5143
  • 20 Murray B, Zhao S, Aramini JM, Wang H, Biscoe MR. ACS Catal. 2021; 11: 2504
    • 21a Ameen D, Snape TJ. Med. Chem. Commun. 2013; 4: 893
    • 21b Jia T, Cao P, Liao J. Chem. Sci. 2018; 9: 546
    • 21c Hao Y.-J, Hu X.-S, Zhou Y, Zhou J, Yu J.-S. ACS Catal. 2020; 10: 955
  • 22 Trost BM, Czabaniuk LC. Angew. Chem. Int. Ed. 2014; 53: 2826
    • 23a Uenishi J, Beau JM, Armstrong RW, Kishi Y. J. Am. Chem. Soc. 1987; 109: 4756
    • 23b Hirabayashi K, Kawashima J, Nishihara Y, Mori A, Hiyama T. Org. Lett. 1999; 1: 299
    • 23c Chen H, Deng M.-Z. J. Org. Chem. 2000; 65: 4444
  • 24 Matthew SC, Glasspoole BW, Eisenberger P, Crudden CM. J. Am. Chem. Soc. 2014; 136: 5828
    • 25a Stymiest JL, Bagutski V, French RM, Aggarwal VK. Nature 2008; 456: 778
    • 25b Bagutski V, French RM, Aggarwal VK. Angew. Chem. Int. Ed. 2010; 49: 5142
  • 26 Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
  • 27 Awano T, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 20738
    • 28a Yamamoto Y, Takada S, Miyaura N. Chem. Lett. 2006; 35: 704
    • 28b Sebelius S, Olsson VJ, Wallner OA, Szabó KJ. J. Am. Chem. Soc. 2006; 128: 8150
    • 28c Farmer JL, Hunter HN, Organ MG. J. Am. Chem. Soc. 2012; 134: 17470
    • 28d Yang Y, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 10642
  • 29 Partridge BM, Chausset-Boissarie L, Burns M, Pulis AP, Aggarwal VK. Angew. Chem. Int. Ed. 2012; 51: 11795
  • 30 Chausset-Boissarie L, Ghozati K, LaBine E, Chen JL. Y, Aggarwal VK, Crudden CM. Chem. Eur. J. 2013; 19: 17698
  • 31 Ding J, Rybak T, Hall DG. Nat. Commun. 2014; 5: 5474
  • 32 Rybak T, Hall DG. Org. Lett. 2015; 17: 4156
  • 33 Rubial B, Collins BS, Bigler R, Aichhorn S, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 1366
  • 34 Potter B, Edelstein EK, Morken JP. Org. Lett. 2016; 18: 3286
  • 35 Potter B, Szymaniak AA, Edelstein EK, Morken JP. J. Am. Chem. Soc. 2014; 136: 17918
  • 36 Sandrock DL, Jean-Gerard L, Chen C.-Y, Dreher SD, Molander GA. J. Am. Chem. Soc. 2010; 132: 17108
  • 37 Hoang GL, Yang ZD, Smith SM, Pal R, Miska JL, Pérez DE, Takacs JM. Org. Lett. 2015; 17: 940
  • 38 Hoang GL, Takacs JM. Chem. Sci. 2017; 8: 4511
  • 39 Ohmura T, Miwa K, Awano T, Suginome M. Chem. Asian J. 2018; 13: 2414
  • 40 Daini M, Suginome M. J. Am. Chem. Soc. 2011; 133: 4758
  • 41 Blaisdell TP, Morken JP. J. Am. Chem. Soc. 2015; 137: 8712
  • 42 LaPorte AJ, Shi Y, Hein JE, Burke MD. ACS Catal. 2022; 12: 10905
  • 43 Molander GA, Wisniewski SR. J. Am. Chem. Soc. 2012; 134: 16856
  • 44 Laitar DS, Tsui EY, Sadighi JP. J. Am. Chem. Soc. 2006; 128: 11036
  • 45 Kurahayashi K, Hanaya K, Sugai T, Hirai G, Higashibayashi S. Chem. Eur. J. 2023; 29: e202203376
  • 46 Lee JC. H, McDonald R, Hall DG. Nat. Chem. 2011; 3: 894
  • 47 Endo K, Ohkubo T, Hirokami M, Shibata T. J. Am. Chem. Soc. 2010; 132: 11033
  • 48 Feng X, Jeon H, Yun J. Angew. Chem. Int. Ed. 2013; 52: 3989
  • 49 Sun C, Potter B, Morken JP. J. Am. Chem. Soc. 2014; 136: 6534
  • 50 Viereck P, Krautwald S, Pabst TP, Chirik PJ. J. Am. Chem. Soc. 2020; 142: 3923
  • 51 Kong Z, Hu W, Morken JP. ACS Catal. 2023; 13: 11522
  • 52 Dreher SD, Dormer PG, Sandrock DL, Molander GA. J. Am. Chem. Soc. 2008; 130: 9257
  • 53 Willems S, Toupalas G, Reisenbauer JC, Morandi B. Chem. Commun. 2021; 57: 3909
  • 54 Lehmann JW, Crouch IT, Blair DJ, Trobe M, Wang P, Li J, Burke MD. Nat. Commun. 2019; 10: 1263