Synthesis 2023; 55(08): 1298-1308
DOI: 10.1055/s-0042-1751407
paper

Arylation and Alkyne Insertion to C-Acylimines: Rapid Access to 2-Trifluoromethylated and Other Fully Substituted Pyrroles in One Pot

,
Arun Doma
,
Rajeshwari Tangellapally
This work was financially supported by the IOE-UOH grant No. UoH/IoE/RC1-08.


Abstract

A one-pot, four-component strategy for the synthesis of trifluoromethylated, and other fully-substituted pyrroles is reported using minimum loading of calcium catalyst at room temperature. A variety of arenes, α-keto aldehydes, amines, and activated alkynes took part in the reaction to produce high-yielding products. Friedel–Crafts arylation and aza-Michael addition are the key reactions in this approach.

Supporting Information



Publication History

Received: 21 November 2022

Accepted after revision: 19 December 2022

Article published online:
11 January 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sharma A, Wakode S, Sharma S, Fayaz F, Pottoo FH. Curr. Org. Chem. 2020; 24: 2555
    • 1b Hafez EA. A, Al-Mousawi SM, Moustafa MS, Sadek KU, Elnagdi MH. Green Chem. Lett. Rev. 2013; 6: 189
    • 1c Horvath IT, Anastas PT. Chem. Rev. 2007; 107: 2169
    • 1d Horvath IT, Anastas PT. Chem. Rev. 2007; 107: 2167
    • 2a John SE, Gulati S, Shankaraiah N. Org. Chem. Front. 2021; 8: 4237
    • 2b Rodrigues MO, Eberlin MN, Neto BA. D. Chem. Rec. 2021; 21: 2762
    • 2c Graebin CS, Ribeiro FV, Rogerio KR, Kummerle AE. Curr. Org. Synth. 2019; 16: 855
    • 2d Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
    • 3a Fan H, Peng J, Hamannand MT, Hu J.-F. Chem. Rev. 2008; 108: 264
    • 3b Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 3c O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 3d Jones RA, Bean GP. The Chemistry of Pyrroles . Academic Press; London: 1977: 15

      For examples, see:
    • 4a Reyes JC. P, Romo D. Angew. Chem. Int. Ed. 2012; 51: 6870
    • 4b Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
    • 4c Sundberg RJ. In Comprehensive Heterocyclic Chemistry II, Vol. 2. Katritzky AR, Rees CW, Scriven EF. V, Bird CW. Elsevier Science, Ltd; Oxford: 1996: 119
    • 5a Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
    • 5b Lehuede J, Fauconneau B, Barrier L, Ourakow M, Piriouand A, Vierfond J.-M. Eur. J. Med. Chem. 1999; 34: 991
    • 6a Biava M, Porretta GC, Deidda D, Pompei R, Tafic A, Manettic F. Bioorg. Med. Chem. 2004; 12: 1453
    • 6b Lindel T, Hochguertel M, Assmann M, Koeck M. J. Nat. Prod. 2000; 63: 1566
    • 7a Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 7b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308

      For selected reviews, see:
    • 8a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 8b Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006: 339
    • 8c Hiyama T. Organofluorine Compounds Chemistry and Applications. Springer; Berlin: 2000: 137
    • 9a Treacy MF, Miller TP, Gard IE, Lovell JB, Wright DP. Jr. Proceedings of the Beltwide Cotton Conference 1991; 2: 738
    • 9b Miller TP, Treacy MF, Gard IE, Lovell JB, Wright DP. Jr, Addor RW, Kamhi VM. Brighton Crop Protection Conference, Pests and Diseases 1990; 1: 41
    • 10a Addor RW, Donovan SF, Diehl RE. Patent CN 1056491 A 19911127, 1991
    • 10b Hu J, Umemoto T. Synthetic Organofluorine Chemistry . Springer; Berlin: 2018
    • 10c Gouverneur V, Müller K. Fluorine in Pharmaceutical and Medicinal Chemistry . Imperial College Press; London: 2012
    • 10d Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley; New York: 2009
    • 10e Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; New York: 2000
  • 11 Zanatta N, Schneider JM. F. M, Schneider PH, Wouters AD, Bonacorso HG, Martins MA. P, Wessjohann LA. J. Org. Chem. 2006; 71: 6996
  • 12 Aquino E. dC, Leonel G, Gariboti VC, Frizzo CP, Martins MA. P, Bonacorso HG, Zanatta N. J. Org. Chem. 2015; 80: 12453
    • 13a Schneider T, Seitz B, Schiwek M, Maas G. J. Fluorine Chem. 2020; 235: 109567
    • 13b Zhang Y, Lee TS, Favale JM, Leary DC, Petersen JL, Scholes GD, Castellano FN, Milsmann C. Nat. Chem. 2020; 12: 345
    • 13c Du Y, Pearson RM, Lim C.-H, Sartor SM, Ryan MD, Yang H, Damrauer NH, Miyake GM. Chem. Eur. J. 2017; 23: 10962
    • 13d Kino T, Nagase Y, Ohtsuka Y, Yamamoto K, Uraguchi D, Tokuhisa K, Yamakawa T. J. Fluorine Chem. 2010; 131: 98
    • 13e Wiehn MS, Vinogradova EV, Togni A. J. Fluorine Chem. 2010; 131: 951
    • 14a Zhou N.-N, Zhu H.-T, Yanga D.-S, Guan Z.-H. Org. Biomol. Chem. 2016; 14: 7136
    • 14b Zhao Y, Wang H, Li X, Wang D, Xin X, Wan B. Org. Biomol. Chem. 2016; 14: 526
  • 15 Wu W, Wen S, Zhang X, Lin Q, Weng Z. Org. Lett. 2021; 23: 6352
  • 16 Ge J, Ding Q, Wang X, Peng Y. J. Org. Chem. 2020; 85: 7658
    • 17a Vannada J, Sulthan M, Arun D, Dada R, Yaragorla S. J. Org. Chem. 2020; 85: 6697
    • 17b Dada R, Sulthan M, Yaragorla S. Org. Lett. 2020; 22: 279
    • 17c Yaragorla S, Dada R, Rajesh P, Sharma M. ACS Omega 2018; 3: 2934
    • 18a CCDC 2216743 (7s) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
    • 18b See also the Supporting Information for the details of crystal structure.
    • 19a Yaragorla S, Rajesh P, Pareek A, Kumar A. Adv. Synth. Catal. 2018; 360: 4422
    • 19b Yaragorla S, Pareek A, Dada R. Tetrahedron Lett. 2017; 58: 4642