Synthesis 2023; 55(04): 692-706
DOI: 10.1055/s-0042-1751371
paper

A Novel Palladium-Based Heterogeneous Catalyst for Tandem Annulation: A Strategy for Direct Synthesis of Acridones

H. Sebastián Steingruber
a   Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
,
Pamela Mendioroz
a   Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
,
M. Julia Castro
a   Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
,
María A. Volpe
b   Planta Piloto de Ingeniería Química (PLAPIQUI-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
,
Darío C. Gerbino
a   Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
› Institutsangaben
This work was generously supported by the National Council of Scientific­ and Technical Research (Consejo Nacional de Investigaciones Científicas y Técnicas; CONICET), the National Agency for Scientific­ and Technological Promotion (Agencia Nacional de Promoción Científica y Tecnológica; ANPCyT), and the Universidad Nacional del Sur (Secretaría General de Ciencia y Tecnología, Universidad Nacional­ del Sur; SGCyT-UNS), Argentina.


Dedicated to Professor Hans-Günther Schmalz on the occasion of his 65th birthday

Abstract

In order to develop an efficient, rapid, and modular cascade strategy for the direct synthesis of acridones, palladium supported on sulfated alumina and microwave activation are employed. Multifunctional heterogeneous palladium catalysts were prepared in order to carry out the sequential annulation via a Buchwald–Hartwig amination followed by an intramolecular annulation in a one-pot process. This new protocol represents the first report on a catalytic tandem synthesis of acridone derivatives from commercially available starting materials, under ligand-free conditions. The scope of the present methodology is extended to the generation of a library of functionalized acridones, showing high functional group compatibility, in moderate to excellent yields. The applicability of this novel transformation was demonstrated by the concise total synthesis of the natural product arborinine.

Supporting Information



Publikationsverlauf

Eingereicht: 29. Juli 2022

Angenommen nach Revision: 12. September 2022

Artikel online veröffentlicht:
11. Oktober 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kumar R, Sharma S, Prasad D. In Key Heterocycle Cores for Designing Multitargeting Molecules, Chap. 3. Silakari O. Elsevier; Amsterdam: 2018
    • 2a Miglbauer E, Demitri N, Himmelsbach M, Monkowius U, Sariciftci NS, Głowacki ED, Oppelt KT. ChemistrySelect 2016; 1: 6349
    • 2b Hamzehpoor E, Ruchlin C, Tao Y, Ramos-Sanchez JE, Titi HM, Cosa G, Perepichka DF. J. Phys. Chem. Lett. 2021; 12: 6431
    • 3a Gao H, Zhang G. Eur. J. Org. Chem. 2020; 5455
    • 3b Pereira RC, Pontinha AD. R, Pineiro M, Seixas de Melo JS. Dyes Pigm. 2019; 166: 203
    • 3c Chan YC, Li CY, Lai CW, Wu MW, Tseng HJ, Chang CC. Appl. Sci. 2020; 10: 8708
    • 3d Singh P, Kumar A, Kaur S, Singh A, Gupta M, Kaur G. Med. Chem. Commun. 2016; 7: 632
    • 3e Faller T, Hutton K, Okafo G, Gribble A, Camilleri P, Games DE. Chem. Commun. 1997; 1529
    • 4a Zheng Z, Dian L, Yuan Y, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2014; 79: 7451
    • 4b Zhou W, Yang Y, Liu Y, Deng GJ. Green Chem. 2013; 15: 76
    • 4c Yu J, Yang H, Jiang Y, Fu H. Chem. Eur. J. 2013; 19: 4271
    • 4d Li XA, Wang HL, Yang SD. Org. Lett. 2013; 15: 1794
    • 4e MacNeil SL, Gray M, Gusev DG, Briggs LE, Snieckus V. J. Org. Chem. 2008; 73: 9710
    • 5a Huang PC, Parthasarathy K, Cheng CH. Chem. Eur. J. 2013; 19: 460
    • 5b Zhou W, Liu Y, Yang Y, Deng GJ. Chem. Commun. 2012; 48: 10678
    • 5c Wei WT, Sheng JF, Miao H, Luo X, Song XH, Yan M, Zou Y. Adv. Synth. Catal. 2018; 360: 2101
  • 6 Wen J, Tang S, Zhang F, Shi R, Lei A. Org. Lett. 2017; 19: 94
  • 7 Wu H, Zhang Z, Liu Q, Liu T, Ma N, Zhang G. Org. Lett. 2018; 20: 2897
  • 8 Zhao J, Larock RC. J. Org. Chem. 2007; 72: 583
  • 9 Pang X, Lou Z, Li M, Wen L, Chen C. Eur. J. Org. Chem. 2015; 3361
  • 10 Jiang CY, Xie H, Huang ZJ, Liang JY, Huang YX, Liang QP, Zeng JY, Zhou B, Zhang SS, Shu B. Org. Biomol. Chem. 2021; 19: 8487
    • 11a Wu H, Ma N, Song M, Zhang G. Chin. Chem. Lett. 2020; 31: 1580
    • 11b Janke J, Villinger A, Ehlers P, Langer P. Synlett 2019; 30: 817
    • 11c Xiao L, Liu G, Li Z, Ren P, Ren L, Kong J. Chin. J. Org. Chem. 2020; 40: 2988
    • 11d Zhang LJ, Yang W, Hu Z, Zhang XM, Xu X. Adv. Synth. Catal. 2020; 362: 2379
  • 12 Climent MJ, Corma A, Iborra S, Sabater MJ. ACS Catal. 2014; 4: 870
    • 13a Climent MJ, Corma A, Iborra S. Chem. Rev. 2011; 111: 1072
    • 13b Climent MJ, Corma A, Iborra S. RSC Adv. 2012; 2: 16
    • 15a Guram AS, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901
    • 15b Paul F, Patt J, Hartwig JF. J. Am. Chem. Soc. 1994; 116: 5969
    • 15c Dorel R, Grugel CP, Haydl AM. Angew. Chem. Int. Ed. 2019; 58: 17118
    • 15d Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 16a Wakaki T, Togo T, Yoshidome D, Kuninobu Y, Kanai M. ACS Catal. 2018; 8: 3123
    • 16b Tetsuya S, Tomoaki I, Masahiro M, Masakatsu N. Chem. Lett. 1996; 25: 823
  • 17 López-Aguado C, Paniagua M, Melero JA, Iglesias J, Juárez P, López Granados M, Morales G. Catalysis 2020; 10: 678
  • 18 Neyertz C, Volpe M, Gigola C. Appl. Catal., A 2004; 277: 137
  • 19 Casoni AI, Hoch PM, Volpe MA, Gutierrez VS. J. Clean. Prod. 2018; 178: 237
  • 20 Mao Z, Gu H, Lin X. Catalysts 2021; 11: 1
  • 21 Liu J, He F, Gunn TM, Zhao D, Roberts CB. Langmuir 2009; 25: 7116
  • 22 Piccolo L. Catal. Today 2021; 373: 80
    • 23a Banerjee SK, Chakravarti D, Chakravarti RN, Fales HM, Klayman DL. Tetrahedron 1961; 16: 251
    • 23b Muriithi MW, Abraham WR, Addae-Kyereme J, Scowen I, Croft SL, Gitu PM, Kendrick H, Njagi EN. M, Wright CW. J. Nat. Prod. 2002; 65: 956
    • 23c Waffo AF. K, Coombes PH, Crouch NR, Mulholland DA, El Amin SM, Smith PJ. Phytochemistry 2007; 68: 663
    • 24a Hughes G, Ritchie E. Aust. J. Chem. 1951; 4: 423
    • 24b Hughes G, Neill K, Ritchie E. Aust. J. Chem. 1950; 3: 497
    • 24c Pal C, Kundu MK, Bandyopadhyay U, Adhikari S. Bioorg. Med. Chem. Lett. 2011; 21: 3563
    • 24d Bera SS, Sk MR, Maji MS. Chem. Eur. J. 2019; 25: 1806
  • 25 Yan MC, Tu Z, Lin C, Ko S, Hsu J, Yao CF. J. Org. Chem. 2004; 69: 1565
    • 26a Song J, Ding K, Sun W, Wang S, Sun H, Xiao K, Liu C. Tetrahedron Lett. 2018; 59: 2889
    • 26b Álvarez-Bercedo P, Flores-Gaspar A, Correa A, Martin R. J. Am. Chem. Soc. 2010; 132: 466
  • 27 Rahim K, Farhadi M, Forough M, Hajizadeh S. J. Nanostruct. 2018; 8: 47
  • 28 Amarego WL. F. Purification of Laboratory Chemicals, 8th ed. Butterworth-Heinemann; Oxford: 2017
  • 29 Garcia EA, Rueda EH, Rouco AJ. Appl. Catal., A 2001; 210: 363
  • 30 Wei WT, Sheng JF, Miao H, Luo X, Song XH, Yan M, Zou Y. Adv. Synth. Catal. 2018; 360: 2101
    • 31a Knapp W. Monatsh. Chem. 1937; 70: 251
    • 31b Xiong Z, Zhang X, Li Y, Peng X, Fu J, Guo J, Xie F, Jiang C, Lin B, Liu Y, Cheng M. Org. Biomol. Chem. 2018; 16: 7361
  • 32 Bongui JB, Elomri A, Seguin E, Tillequin F, Pfeiffer B, Renard P, Pierre A, Atassi G. Chem. Pharm. Bull. 2001; 49: 1077
  • 33 Ghosh P, Ganguly B, Das S. Appl. Organomet. Chem. 2018; 32: e4173
  • 34 Hayashi K, Matsumoto A, Hirata S. Chem. Commun. 2021; 57: 1738
  • 35 Wu H, Zhang Z, Liu Q, Liu T, Ma N, Zhang G. Org. Lett. 2018; 20: 2897
  • 36 Parveen M, Aslam A, Nami SA. A, Malla AM, Alam M, Lee DU, Rehman S, Silva PS. P, Silva MR. J. Photochem. Photobiol., B 2016; 161: 304
  • 37 Kancharla P, Dodean RA, Li Y, Kelly JX. RSC Adv. 2019; 9: 42284
  • 38 Fang Y, Rogness DC, Larock RC, Shi F. J. Org. Chem. 2012; 77: 6262
  • 39 Li XA, Wang HL, Yang SD. Org. Lett. 2013; 15: 1794