Klin Monbl Augenheilkd 2016; 233(11): 1213-1221
DOI: 10.1055/s-0042-116321
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Retinale und kortikale Aktivierung durch elektrische Stimulation mit Netzhautimplantaten

Retinal and Cortical Activation by Electrical Stimulation with Retina Implants
A. Stett
1   NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Reutlingen
,
U. T. Eysel
2   Abteilung für Neurophysiologie, Medizinische Fakultät, Ruhr-Universität Bochum
› Author Affiliations
Further Information

Publication History

eingereicht 21 July 2016

akzeptiert 30 August 2016

Publication Date:
17 November 2016 (online)

Zusammenfassung

In Deutschland leiden etwa 30 000–40 000 Menschen an der Krankheit Retinitis pigmentosa (RP), die im Endstadium zur Erblindung führt. Die bisher einzige Hilfe für an RP erblindete Patienten sind Netzhautimplantate, die seit mehreren Jahren entwickelt werden und nunmehr als Medizinprodukt zugelassen sind. Netzhautimplantate erzeugen durch elektrische Stimulation der degenerierten Netzhaut Sehwahrnehmungen, die im Alltag blinder Menschen hilfreich sind. Allerdings ist die gegenwärtig erreichbare Sehqualität noch so, dass die Menschen auch mit Implantat gesetzlich blind sind. Die Sehqualität, die mit epi- und subretinalen Implantaten erreicht werden kann, hängt zum einen von patientenindividuellen Faktoren ab, wie etwa dem individuellen Verlauf und Status der Netzhautdegeneration, zum anderen von der Schnittstelle zwischen Implantat und Netzhaut und der Qualität der mit elektrischer Stimulation erzielbaren neuronalen Aktivierung. Biophysikalische Ansatzpunkte zur funktionellen Weiterentwicklung der Implantate, die sich an der Physiologie der Netzhaut (Zelldichte, intraretinale Verschaltungen) orientieren, bieten die technische Seite der Schnittstelle (Elektrodenmaterialien, -größe und -dichte) sowie die Stimulationsprotokolle (Zeitverläufe der elektrischen Reize, räumlich-zeitliche Stimulationsmuster), mit denen visuelle Informationen in die degenerierte Netzhaut eingespeist werden. Die Optimierung der Reizparameter kann durch eine detaillierte Analyse kortikaler Antworten mit geeigneten elektrophysiologischen und optischen Methoden unterstützt werden. Dieser Artikel beschreibt die physiologischen und biophysikalischen Grundlagen der elektrischen Netzhautstimulation und die daraus resultierende retinale und kortikale Aktivierung.

Abstract

In Germany, about 30,000 to 40,000 people suffer from retinitis pigmentosa (RP), which ultimately results in blindness. The only aid to blind RP patients are retinal implants: These have been under development for several years and have now been approved as a medical product. Retinal implants produce visual perceptions in response to electrical stimulation of the degenerated retina and are useful in the everyday life of blind people. However, the currently achievable quality of vision is such that people with a retinal implant are still legally blind. The visual quality that can be achieved with epi- and subretinal implants depends not only on patient-specific factors such as individual history and status of retinal degeneration, but especially on the interface between implant and retina and the quality of the achievable neuronal activation. Biophysical approaches to functional improvements of the implants are founded on the physiology of the retina (cell density, intraretinal interconnections), are based on technical optimisation of the interface (electrode materials, size and density), and exploit the stimulation protocols with which visual information is fed into the degenerated retina (time courses of electrical stimuli, spatiotemporal stimulation pattern). Optimisation of stimulation parameters can be supported by a detailed analysis of cortical responses, with appropriate electrophysiological and optical methods. This article looks at both the physiological and biophysical fundamentals of electrical retinal stimulation, as well as the resulting retinal and cortical activation.

 
  • Literatur

  • 1 PRO RETINA Deutschland e.V.. Retinitis pigmentosa (RP), Krankheitsbild. Im Internet: http://www.pro-retina.de/netzhauterkrankungen/retinitis-pigmentosa/krankheitsbild Stand: 11.07.2016
  • 2 Zrenner E. Will retinal implants restore vision?. Science 2002; 295: 1022-1025
  • 3 Yue L, Weiland JD, Roska B et al. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog Retin Eye Res 2016; 53: 21-47
  • 4 Villalobos J, Nayagam DA, Allen PJ et al. A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation. Invest Ophthalmol Vis Sci 2013; 54: 3751-3762
  • 5 Masland RH. Cell populations of the retina: the Proctor lecture. Invest Ophthalmol Vis Sci 2011; 52: 4581-4591
  • 6 Webvision. Neurotransmitters in the retina by Helga Kolb. Im Internet: http://webvision.med.utah.edu/book/part-iv-neurotransmitters-in-the-retina-2/part-iv-neurotransmitters-in-the-retina/ Stand: 17.06.2016
  • 7 Masland RH. The fundamental plan of the retina. Nat Neurosci 2001; 4: 877-886
  • 8 Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ. Principles of Neural Science. 5. ed. New York: McGraw-Hill; 2013
  • 9 Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368: 1795-1809
  • 10 Humayun MS, Prince M, de Juan jr. E et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitits pigmentosa. Invest Ophthalmol Vis Sci 1999; 40: 143-148
  • 11 Santos A, Humayun MS, de Juan jr. E et al. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 1997; 115: 511-515
  • 12 Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med 2008; 358: 2606-2617
  • 13 Medeiros NE, Curcio CA. Preservation of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001; 42: 795-803
  • 14 Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res 2005; 81: 123-137
  • 15 Tracey KJ. Shock Medicine. Sci Am 2015; 312: 28-35
  • 16 Durand DM. Electric stimulation of excitable tissue. In: Bronzino JD, ed. The Biomedical Engineering Handbook. 2nd ed. Boca Raton: CRC Press LLC; 2000
  • 17 Humayun MS, de Juan jr. E, Dagnelie G et al. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 1996; 114: 40-46
  • 18 Zrenner E, Bartz-Schmidt KU, Benav H et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 2011; 278: 1489-1497
  • 19 De Balthasar C, Patel S, Roy A et al. Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci 2008; 49: 2303-2314
  • 20 Weiland JD, Humayun MS. Retinal prosthesis. IEEE Trans Biomed Eng 2014; 61: 1412-1424
  • 21 Chuang AT, Margo CE, Greenberg PB. Retinal implants: a systematic review. Br J Ophthalmol 2014; 98: 852-856
  • 22 Humayun MS, Dorn JD, da Cruz L et al. Interim results from the international trial of Second Sightʼs visual prosthesis. Ophthalmology 2012; 119: 779-788
  • 23 Weitz AC, Nanduri D, Behrend MR et al. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci Transl Med 2015; 7: 318ra203
  • 24 Stingl K, Bartz-Schmidt KU, Besch D et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 2013; 280: 20130077
  • 25 Stingl K, Bartz-Schmidt KU, Besch D et al. Subretinal visual implant alpha IMS – Clinical trial interim report. Vision Res 2015; 111: 149-160
  • 26 Fried SI, Lasker AC, Desai NJ et al. Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells. J Neurophysiol 2009; 101: 1972-1987
  • 27 Stett A, Schwenger D. Spatial sensitivity of ganglion cells in RCS rat retina to subretinal electrical stimulation with line electrodes. Invest Ophthalmol Vis Sci 2006; 47: 3170
  • 28 Stutzki H, Helmhold F, Eickenscheidt M et al. Subretinal electrical stimulation reveals intact network activity in the blind mouse retina. J Neurophysiol 2016; DOI: 10.1152/jn.01095.2015.
  • 29 Gerhardt M, Alderman J, Stett A. Electric field stimulation of bipolar cells in a degenerated retina – a theoretical study. IEEE Trans Neural Syst Rehabil Eng 2010; 18: 1-10
  • 30 Werginz P, Benav H, Zrenner E et al. Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Res 2015; 111: 170-181
  • 31 Stett A, Mai A, Herrmann T. Retinal charge sensitivity and spatial discrimination obtainable by subretinal implants: key lessons learned from isolated chicken retina. J Neural Eng 2007; 4: S7-S16
  • 32 Eickenscheidt M, Jenkner M, Thewes R et al. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array. J Neurophysiol 2012; 107: 2742-2755
  • 33 Boinagrov D, Pangratz-Fuehrer S, Goetz G et al. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes. J Neural Eng 2014; 11: 026008
  • 34 Cao X, Sui X, Lyu Q et al. Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis. J Neuroeng Rehabil 2015; 12: 73
  • 35 Ho AC, Humayun MS, Dorn JD et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology 2015; 122: 1547-1554
  • 36 Luo YH, da Cruz L. The Argus(®) II Retinal Prosthesis System. Prog Retin Eye Res 2016; 50: 89-107
  • 37 Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng 2008; 10: 275-309
  • 38 Pérez Fornos A, Sommerhalder J, da Cruz L et al. Temporal properties of visual perception on electrical stimulation of the retina. Invest Ophthalmol Vis Sci 2012; 53: 2720-2731
  • 39 Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2005; 2: 932-940
  • 40 Grinvald A, Lieke E, Frostig RD et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986; 324: 361-364
  • 41 Wang Q, Millard DC, Zheng HJ et al. Voltage-sensitive dye imaging reveals improved topographic activation of cortex in response to manipulation of thalamic microstimulation parameters. J Neural Eng 2012; 9: 026008
  • 42 Chow AY, Chow VY. Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 1997; 225: 13-16
  • 43 Walter P, Heimann K. Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 2000; 238: 315-318
  • 44 Wong YT, Chen SC, Seo JM et al. Focal activation of the feline retina via a suprachoroidal electrode array. Vision Res 2009; 49: 825-833
  • 45 Villalobos J, Fallon JB, Nayagam DA et al. Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis. J Neural Eng 2014; 11: 046017
  • 46 Mandel Y, Goetz G, Lavinsky D et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat Commun 2013; 4: 1980
  • 47 Walter P, Kisvarday ZF, Gortz M et al. Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 2005; 46: 1780-1785
  • 48 Eckhorn R, Wilms M, Schanze T et al. Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vision Res 2006; 46: 2675-2690
  • 49 Cottaris NP, Elfar SD. Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants. J Neural Eng 2009; 6: 026007
  • 50 Dumm G, Fallon JB, Williams CE et al. Virtual electrodes by current steering in retinal prostheses. Invest Ophthalmol Vis Sci 2014; 55: 8077-8085
  • 51 Tehovnik EJ, Slocum WM. Two-photon imaging and the activation of cortical neurons. Neuroscience 2013; 245: 12-25