Planta Med 2016; 82(14): 1286-1294
DOI: 10.1055/s-0042-111393
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Alkaloids from the Fungus Penicillium spathulatum as α-Glucosidase Inhibitors[*]

Paulina Del Valle
1   Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Ana-Laura Martínez
1   Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Mario Figueroa
1   Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Huzefa A. Raja
2   Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
,
Rachel Mata
1   Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
› Author Affiliations
Further Information

Publication History

received 11 May 2016
revised 22 June 2016

accepted 23 June 2016

Publication Date:
11 July 2016 (online)

Abstract

Benzomalvin A (1), quinolactacins A1 (2), A2 (3) and B (4), quinolonimide (5), asperphenamate (6), and a new halogenated polyhydroxyanthraquinone, namely 2-chloro-6-[2′(S)-hydroxypropyl]-1,3,8-trihydroxy-anthraquinone (7), were isolated from an organic extract obtained from the solid culture of Penicillium spathulatum B35. Compounds 2 and 3 were isolated as an epimeric mixture, and compound 4 as a racemate. The structure of 7 was elucidated using 1D and 2D NMR, combined with computational methods (density functional theory). Compound 1, the mixture of 2 and 3, racemate 4, and compound 6 inhibited the yeast α-glucosidase in a concentration-dependent fashion with IC50 values of 383.2, 273.3, 57.3, and 8.3 µM, respectively. The α-glucosidase inhibitory properties of 1 were confirmed in vivo with an oral sucrose tolerance test in normal and hyperglycemic mice (p < 0.05). Furthermore, docking studies predicted that the most stable conformers of 1 bind to yeast and mammalian α-glucosidases with a higher affinity than acarbose. Finally, 1 also showed antihyperalgesic activity when tested in the formalin assay in hyperglycemic mice (p < 0.05).

* Taken, in part, from the PhD thesis of P. Del Valle.


Supporting Information

 
  • References

  • 1 DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Type 2 diabetes mellitus. Nat Rev Disease Primers 2015; 1: 1-22
  • 2 DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 58: 773-795
  • 3 Israili ZH. Advances in the treatment of type 2 diabetes mellitus. Am J Ther 2011; 18: 117-152
  • 4 Patel SS. Cerebrovascular complications of diabetes: alpha glucosidase inhibitor as potential therapy. Horm Metab Res 2016; 48: 83-91
  • 5 Borges de Melo E, Silveira Gomes A, Carvalho I. α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 2006; 62: 10277-10302
  • 6 Ingavat N, Dobereiner J, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. Aspergilusol A, an α-glucosidase inhibitor from the marine-derived fungus Aspergillus aculeatus . J Nat Prod 2009; 72: 2049-2052
  • 7 Rivera-Chávez J, González-Andrade M, González MC, Glenn AE, Mata R. Thielavins A, J and K: α-glucosidase inhibitors from MEXU 27095, an endophyte fungus from Hintonia latiflora . Phytochemistry 2013; 94: 198-205
  • 8 Lui Y, Yang Q, Xia G, Huang H, Li H, Ma L, Lu Y, He L, Xia X, She Z. Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J Nat Prod 2015; 78: 1816-1822
  • 9 Frisvad JC, Houbraken J, Popma S, Samson RA. Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the anticancer compound asperphenamate. FEMS Microbiol Lett 2013; 339: 77-92
  • 10 Oki T, Matsui T, Osajima Y. Inhibitory effect of α-glucosidase, inhibitors varies according to its origin. J Agric Chem 1999; 47: 550-553
  • 11 Sun HH, Barrow CJ, Sedlock DM, Gillum AM, Cooper R. Benzomalvins, new substance P inhibitors from a Penicillium sp. J Antibiot 1994; 47: 515-522
  • 12 Sun HH, Barrow CJ, Cooper R. Benzomalvin D, a new 1,4-benzodiazepine atropisomer. J Nat Prod 1995; 58: 1575-1580
  • 13 Kakinuma N, Iwai H, Takahashi S, Hamano K, Yanagisawa T, Nagai K, Tanaka K, Suzuki K, Kirikae F, Kirikae T, Nakagawa A. Quinolactacins A, B, and C: novel quinolone compounds from Penicillium sp. EPF-6. I. Taxonomy, production, isolation and biological properties. J Antibiot 2000; 53: 1247-1251
  • 14 Takahashi S, Kakinuma N, Iwai H, Yanagisawa T, Nagai K, Suzuki K, Tokunaga T, Nakagawa A. Quinolactacins A, B, and C: Novel quinolone compounds from Penicillium sp. EPF-6. II. Physico-chemical properties and structure elucidation. J Antibiot 2000; 53: 1252-1256
  • 15 Kim WG, Song NK, Yoo ID. Quinolactacins A1 and A2, new acetylcholinesterase inhibitors from Penicillium citrinum . J Antibiot 2001; 54: 831-835
  • 16 Pomini AM, Ferreira DT, Braz-Filho R, Saridakis HO, Schmitz W, Ishikawa NK, Faccione M. A new method for asperphenamate synthesis and its antimicrobial activity evaluation. Nat Prod Res 2006; 20: 537-541
  • 17 Clark B, Capon RJ, Lacey E, Tennant S, Hill JH. Quinolactacins revisited: from lactams to imide and beyond. Org Biomol Chem 2006; 4: 1512-1519
  • 18 Sugimori T, Okawa T, Eguchi S, Kakehi A, Yashima E, Okamoto Y. The first total synthesis of (−)-benzomalvin A and benzomalvin B via the intramolecular aza-Wittig reactions. Tetrahedron 1998; 54: 7997-8008
  • 19 Raistrick H, Ziffer J. Studies in the biochemistry of micro-organisms. The colouring matters of Penicillium nalgiovensis Laxa. I. Nalgiovensin and nalgiolaxin. Isolation, derivatives and partial structures. Biochem J 1951; 49: 563-574
  • 20 Birch AJ, Stapleford KSJ. The structure of nalgiolaxin. J Chem Soc C 1967; 2570-2571
  • 21 Willoughby PH, Jansma MJ, Hoye TR. A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nat Protoc 2014; 9: 643-660
  • 22 Lodewyk MW, Siebert MR, Tantillo DJ. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic and synthetic organic chemistry. Chem Rev 2012; 112: 1839-1862
  • 23 Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS, Horswill AR, Cooks RG, Cech NB, Oberlies NH. Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod 2014; 77: 1351-1358
  • 24 Yuan L, Li Y, Zou C, Wang C, Gao J, Miao C, Ma E. Synthesis and in vitro antitumor activity of asperphenamate derivatives as autophagy inducer. Bioorg Med Chem Lett 2012; 22: 2216-2220
  • 25 Masiello P, Christophe B, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998; 47: 224-229
  • 26 Irwin JJ, Shoichet BK. Docking screens for novel ligands conferring new biology. J Med Chem 2016; 59: 4103-4120
  • 27 Yamamoto K, Miyake H, Kusunoki M, Osaki S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J 2010; 277: 4205-4214
  • 28 Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol Chem 2010; 23: 17763-17770
  • 29 Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 2008; 375: 782-792
  • 30 Ren LM, Qin XH, Cao XF, Wang LL, Bai F, Bai G, Shen Y. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2011; 2: 827-836
  • 31 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 1999; 28: 235-242
  • 32 Peltier A, Goutman SA, Callaghan BC. Painful diabetic neuropathy. BMJ 2014; 348: g1799
  • 33 White TJ, Bruns T, Lee S, Taylor J. Amplification and direct Sequencing of fungal ribosomal RNA Genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols: a Guide to Methods and Applications. San Diego: Academic Press; 1990: 315-322
  • 34 Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 1993; 2: 113-118
  • 35 Raja HA, Kaur A, El-Elimat T, Figueroa M, Kumar R, Deep G, Agarwal R, Faeth SH, Cech NB, Oberlies NH. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle). Mycology 2015; 6: 8-27
  • 36 Raja HA, El-Elimat T, Oberlies NH, Shearer CA, Miller AN, Tanaka K, Hashimoto A, Fournier J. Minutisphaerales (Dothideomycetes, Ascomycota): a new order of freshwater including a new family, Minutisphaeraceae, and two new species from North Carolina, USA. Mycologia 2015; 107: 845-862
  • 37 Peterson SW. Aspergillus and Penicillium identification using DNA sequences: barcode or MLST?. Appl Microbiol Biotechnol 2012; 95: 339-344
  • 38 Houbraken J, Samson RA. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 2011; 70: 1-51
  • 39 Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 1999; 16: 1799-1808
  • 40 Malkus A, Chang PF, Zuzga SM, Chung KR, Shao J, Cunfer BM, Arseniuk E, Ueng PP. RNA polymerase II gene (RPB2) encoding the second largest protein subunit in Phaeosphaeria nodorum and P. avenaria . Mycol Res 2006; 110: 1152-1164
  • 41 Raja HA, Schoch CL, Hustad VP, Shearer CA, Miller AN. Testing the phylogenetic utility of MCM7 in the Ascomycota. MycoKeys 2011; 1: 63-94
  • 42 Sonmez S, Kirilmaz L, Yucesoy M, Yücel B, Yilmaz B. The effect of bee propolis on oral pathogens and human gingival fibroblasts. J Ethnopharmacol 2005; 102: 371-376
  • 43 Van Meerloo J, Kaspers GJL, Cloos J. Cell Sensitivity Assays: the MTT Assay. In: Cree IA, editor Cancer Cell Culture: Methods and Protocols. N.Y.: Humana Press; 2011: 237-245
  • 44 Trot O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 2010; 31: 445-461