Subscribe to RSS
DOI: 10.1055/s-0041-1737291
Divergent Synthesis of Chalcogenylated Quinolin-2-ones and Spiro[4,5]trienones via Intramolecular Cyclization of N-Arylpropynamides Mediated by Diselenides/Disulfides and PhICl2
Y. Du acknowledges the National Natural Science Foundation of China (22071175) for funding.
Abstract
The reaction of N-arylpropynamides with (dichloroiodo)benzene (PhICl2) and diselenides/disulfides resulted in a divergent synthesis of chalcogenylated quinolinones and spiro[4.5]trienes through intramolecular electrophilic cyclization and chalcogenylation. The chalcogenyl functional group was introduced by an electrophilic reactive organosulfenyl chloride or selenenyl chloride species, generated in situ from the reaction of disulfides/diselenides and PhICl2. Notably, the divergent cyclization pathways were determined by the substituent type on the aniline ring in N-arylpropynamide substrates. Substrates bearing a fluoro, methoxy or trifluoromethoxy group at the para-position of the aniline underwent an alternative spiralization pathway to give the 3-chalcogenylated spiro[4,5]trienones.
Key words
quinolin-2-ones - diselenides/disulfides - PhICl2 - intramolecular cyclization - spiro[4,5]trienonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1737291.
- Supporting Information
Publication History
Received: 18 September 2021
Accepted after revision: 17 October 2021
Article published online:
29 November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Park HB, Kim Y.-J, Lee JK, Lee KR, Kwon HC. Org. Lett. 2012; 14: 5002
- 1b D’yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775
- 1c Rios R. Chem. Soc. Rev. 2012; 41: 1060
- 1d Gravel E, Poupon E. Nat. Prod. Rep. 2010; 27: 32
- 1e Li X, Huo X, Li J, She X, Pan X. Chin. J. Chem. 2009; 27: 1379
- 2a DeVita RJ, Hollings DD, Goulet MT, Wyvratt MJ, Fisher MH, Lo J.-L, Yang YT, Cheng K, Smith RG. Bioorg. Med. Chem. Lett. 1999; 9: 2615
- 2b Aleksić M, Bertoša B, Nhili R, Uzelac L, Jarak I, Depauw S, David-Cordonnier M.-H, Kralj M, Tomić S, Karminski-Zamola G. J. Med. Chem. 2012; 55: 5044
- 2c Tedesco R, Shaw AN, Bambal R, Chai D, Concha NO, Darcy MG, Dhanak D, Fitch DM, Gates A, Gerhardt WG, Halegoua DL, Han C, Hofmann GA, Johnston VK, Kaura AC, Liu N, Keenan RM, Lin-Goerke J, Sarisky RT, Wiggall KJ, Zimmerman MN, Duffy KJ. J. Med. Chem. 2006; 49: 971
- 2d Crawley GC, Briggs MT, Dowell RI, Edwards PN, Hamilton PM, Kingston JF, Oldham K, Waterson D, Whalley DP. J. Med. Chem. 1993; 36: 295
- 2e Ikuma Y, Hochigai H, Kimura H, Nunami N, Kobayashi T, Uchiyama K, Furuta Y, Sakai M, Horiguchi M, Masui Y, Okazaki K, Sato Y, Nakahira H. Bioorg. Med. Chem. 2012; 20: 5864
- 2f Jönsson S, Andersson G, Fex T, Fristedt T, Hedlund G, Jansson K, Abramo L, Fritzson I, Pekarski O, Runström A, Sandin H, Thuvesson I, Björk A. J. Med. Chem. 2004; 47: 2075
- 3a Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
- 3b Feng MH, Tang BQ, Liang SH, Jiang XF. Curr. Top. Med. Chem. 2016; 16: 1200
- 3c Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202
- 3d De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
- 3e Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 3f Zeni G, Lüdtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032
- 3g Perin G, Lenardão EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277
- 3h Yu S, Wan B, Li X. Org. Lett. 2015; 17: 58
- 3i Lavekar AG, Equbal D, Saima, Sinha AK. Adv. Synth. Catal. 2018; 360: 180
- 3j Zhang X, Wang C, Jiang H, Sun L. Chem. Commun. 2018; 54: 8781
- 4a Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
- 4b Mondal S, Manna D, Mugesh G. Angew. Chem. Int. Ed. 2015; 54: 9298
- 4c Pang Y, An B, Lou L, Zhang J, Yan J, Huang L, Li X, Yin S. J. Med. Chem. 2017; 60: 7300
- 5a Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 5b Li J, Ma C, Xing D, Hu W. Org. Lett. 2019; 21: 2101
- 5c Xu Z.-F, Jiang M, Liu J.-T. Chin. J. Chem. 2017; 35: 442
- 5d Liu Y, Chen X.-L, Sun K, Li X.-Y, Zeng F.-L, Liu X.-C, Qu L.-B, Zhao Y.-F, Yu B. Org. Lett. 2019; 21: 4019
- 6a Paul S, Shrestha R, Edison TN. J. I, Lee YR, Kim SH. Adv. Synth. Catal. 2016; 358: 3050
- 6b Zhang N, Zuo H, Xu C, Pan J, Sun J, Guo C. Chin. Chem. Lett. 2020; 31: 337
- 6c Gao W.-C, Liu T, Cheng Y.-F, Chang H.-H, Li X, Zhou R, Wei W.-L, Qiao Y. J. Org. Chem. 2017; 82: 13459
- 6d Cui H, Wei W, Yang D, Zhang J, Xu Z, Wen J, Wang H. RSC Adv. 2015; 5: 84657
- 6e Wu W, An Y, Li J, Yang S, Zhu Z, Jiang H. Org. Chem. Front. 2017; 4: 1751
- 6f Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
- 6g Song R, Xie Y. Chin. J. Chem. 2017; 35: 280
- 6h Fang J.-D, Yan X.-B, Zhou L, Wang Y.-Z, Liu X.-Y. Adv. Synth. Catal. 2019; 361: 1985
- 6i Li M, Song R.-J, Li J.-H. Chin. J. Chem. 2017; 35: 299
- 7 Mantovani AC, Goulart TA. C, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2014; 79: 10526
- 8 Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
- 9 Qian P.-C, Liu Y, Song R.-J, Xiang J.-N, Li J.-H. Synlett 2015; 26: 1213
- 10 Hua J, Fang Z, Xu J, Bian M, Liu C, He W, Zhu N, Yang Z, Guo K. Green Chem. 2019; 21: 4706
- 11a Xing L, Zhang Y, Li B, Du Y. Org. Lett. 2019; 21: 3620
- 11b Shang Z, Chen Q, Xing L, Zhang Y, Wait L, Du Y. Adv. Synth. Catal. 2019; 361: 4926
- 11c Ai Z, Xiao J, Li Y, Guo B, Du Y, Zhao K. Org. Chem. Front. 2020; 7: 3935
- 12 Browne DM, Niyomura O, Wirth T. Org. Lett. 2007; 9: 3169
- 13a Sahoo H, Grandhi GS, Ramakrishna I, Baidya M. Org. Biomol. Chem. 2019; 17: 10163
- 13b Liu T, Li Y, Jiang L, Wang J, Jin K, Zhang R, Duan C. Org. Biomol. Chem. 2020; 18: 1933
- 13c Liu Y, Wang Q.-L, Chen Z, Zhou Q, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2019; 55: 12212
- 14 Most recently, we reported that the F or OMe substituted N-aryl alkynamides at the para position could trigger the spiralization pathway leading to the formation of spiro[4,5]trienones. On the basis of both computational and the experimental results, a new mechanism has been put forward that accounts for the exclusive spiralization/defluorination process. For details describing this, see: Li X, Wang Y, Ouyang Y, Yu Z, Zhang B, Zhang J, Shi H, Zuilhof H, Du Y. J. Org. Chem. 2021; 86: 9490
- 15a Sperança A, Godoi B, Pinton S, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2011; 76: 6789
- 15b Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936
- 16a Mancuso AJ, Brownfain DS, Swern D. J. Org. Chem. 1979; 44: 4148
- 16b Lucchini V, Modena G, Valle G, Capozzi G. J. Org. Chem. 1981; 46: 4720
- 16c Fachini M, Lucchini V, Modena G, Pasi M, Pasquato L. J. Am. Chem. Soc. 1999; 121: 3944
- 16d Brydon SC, Lim SF, Khairallah GN, Maître P, Loire E, da Silva G, O’Hair RA. J, White JM. J. Org. Chem. 2019; 84: 10076
- 17a Tang JS, Guo CC. Synthesis 2015; 47: 108
- 17b Tang JS, Xie YX, Wang ZQ, Li JH. Synthesis 2011; 2789
- 17c Zhou MB, Wei WT, Xie YX, Lei Y, Li JH. J. Org. Chem. 2010; 75: 5635
- 17d Qian DY, Zhang JL. Chem. Commun. 2012; 48: 7082
- 17e Pinto A, Neuville L, Retailleau P, Zhu JP. Org. Lett. 2006; 8: 4927
- 17f Wang CS, Roisnel T, Dixneuf PH, Soulé JF. Adv. Synth. Catal. 2019; 361: 445
- 17g Cao J, Sun K, Dong SD, Lu T, Dong Y, Du D. Org. Lett. 2017; 19: 6724
- 17h Mou CL, Wu JC, Huang ZJ, Sun J, Jin ZC, Chi YR. Chem. Commun. 2017; 53: 13359
- 17i Butke GP, Jimenez MF, Michalik J, Gorski RA, Rossi NF, Wemple J. J. Org. Chem. 1978; 43: 954
- 17j Yin C, Yang T, Pan Y, Wen J, Zhang X. Org. Lett. 2020; 22: 920