Int J Angiol 2021; 30(03): 177-186
DOI: 10.1055/s-0041-1731273
Review Article

Current Status of Primary, Secondary, and Tertiary Prevention of Coronary Artery Disease

Kailash Prasad
1   Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
› Author Affiliations

Abstract

Fifty percent of all death from cardiovascular diseases is due to coronary artery disease (CAD). This is avoidable if early identification is made. Preventive health care has a major role in the fight against CAD. Atherosclerosis and atherosclerotic plaque rupture are involved in the development of CAD. Modifiable risk factors for CAD are dyslipidemia, diabetes, hypertension, cigarette smoking, obesity, chronic renal disease, chronic infection, high C-reactive protein, and hyperhomocysteinemia. CAD can be prevented by modification of risk factors. This paper defines the primary, secondary, and tertiary prevention of CAD. It discusses the mechanism of risk factor–induced atherosclerosis. This paper describes the CAD risk score and its use in the selection of individuals for primary prevention of CAD. Guidelines for primary, secondary, and tertiary prevention of CAD have been described. Modification of risk factors and use of guidelines for prevention of CAD would prevent, regress, and slow down the progression of CAD, improve the quality of life of patient, and reduce the health care cost.



Publication History

Article published online:
25 August 2021

© 2021. International College of Angiology. This article is published by Thieme.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol 2014; 11 (05) 276-289
  • 2 Huma S, Tariq R, Amin DF, Mahmood DKT. Modifiable and non-modifiable predisposing risk factors of myocardial infarction. Review 2012
  • 3 World Health Organization, The World Health Report 2002. Reducing risks, promoting healthy life. Accessed May 25, 2021 at: https://apps.who.int/iris/bitstream/handle/10665/42510/WHR_2002.pdf?sequence=1
  • 4 Prasad K. Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation 1999; 99 (10) 1355-1362
  • 5 Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979; 241 (19) 2035-2038
  • 6 Chait A, Bornfeldt KE. Diabetes and atherosclerosis: is there a role for hyperglycemia?. J Lipid Res 2009; 50 (suppl): S335-S339
  • 7 Kannel WB. Role of blood pressure in cardiovascular disease: the Framingham Study. Angiology 1975; 26 (1, pt. 1): 1-14
  • 8 Nakanishi R, Baskaran L, Gransar H. et al. Relationship of hypertension to coronary atherosclerosis and cardiac events in patients with coronary computed tomographic angiography. Hypertension 2017; 70 (02) 293-299
  • 9 Howard G, Wagenknecht LE, Burke GL. et al. Cigarette smoking and progression of atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study. JAMA 1998; 279 (02) 119-124
  • 10 Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol 2004; 43 (10) 1731-1737
  • 11 Poirier P, Giles TD, Bray GA. et al; American Heart Association, Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113 (06) 898-918
  • 12 Kon V, Linton MF, Fazio S. Atherosclerosis in chronic kidney disease: the role of macrophages. Nat Rev Nephrol 2011; 7 (01) 45-54
  • 13 Campbell LA, Rosenfeld ME. Infection and atherosclerosis development. Arch Med Res 2015; 46 (05) 339-350
  • 14 Prasad K. C-reactive protein increases oxygen radical generation by neutrophils. J Cardiovasc Pharmacol Ther 2004; 9 (03) 203-209
  • 15 Glueck CJ, Shaw P, Lang JE, Tracy T, Sieve-Smith L, Wang Y. Evidence that homocysteine is an independent risk factor for atherosclerosis in hyperlipidemic patients. Am J Cardiol 1995; 75 (02) 132-136
  • 16 McNair E, Qureshi M, Prasad K, Pearce C. Atherosclerosis and the Hypercholesterolemic AGE-RAGE Axis. Int J Angiol 2016; 25 (02) 110-116
  • 17 Prasad K, Mishra M. AGE-RAGE stress, stressors, and antistressors in health and disease. Int J Angiol 2018; 27 (01) 1-12
  • 18 McNair ED, Wells CR, Mabood Qureshi A. et al. Soluble receptors for advanced glycation end products (sRAGE) as a predictor of restenosis following percutaneous coronary intervention. Clin Cardiol 2010; 33 (11) 678-685
  • 19 Prasad K, Kalra J. Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J 1993; 125 (04) 958-973
  • 20 Prasad K, Kalra J, Lee P. Oxygen free radicals as a mechanism of hypercholesterolemic atherosclerosis: effects of probucol. Int J Angiol 1994; 3 (01) 100-112
  • 21 Yang X, Li Y, Li Y. et al. Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol 2017; 8: 600
  • 22 Prasad K. Pathophysiology of atherosclerosis. . In Textbook of Angiology, Eds. John B Chang, Earl R Olsen, Kailash Prasad and Bauer E Sumpio. New York: Springer Ver-Verlag; 2000: 85-106
  • 23 Prasad K. A study on regression of hypercholesterolemic atherosclerosis in rabbits by flax lignan complex. J Cardiovasc Pharmacol Ther 2007; 12 (04) 304-313
  • 24 Prasad K. Flax lignan complex slows down the progression of atherosclerosis in hyperlipidemic rabbits. J Cardiovasc Pharmacol Ther 2009; 14 (01) 38-48
  • 25 Whatley RE, Nelson P, Zimmerman GA. et al. The regulation of platelet-activating factor production in endothelial cells. The role of calcium and protein kinase C. J Biol Chem 1989; 264 (11) 6325-6333
  • 26 Pignol B, Hénane S, Mencia-Huerta JM, Rola-Pleszczynski M, Braquet P. Effect of platelet-activating factor (PAF-acether) and its specific receptor antagonist, BN 52021, on interleukin 1 (IL1) release and synthesis by rat spleen adherent monocytes. Prostaglandins 1987; 33 (06) 931-939
  • 27 Bonavida B, Mencia-Huerta JM, Braquet P. Effect of platelet-activating factor on monocyte activation and production of tumor necrosis factor. Int Arch Allergy Appl Immunol 1989; 88 (1-2): 157-160
  • 28 Vogt W, von Zabern I, Damerau B, Hesse D, Lühmann B, Nolte R. Mechanisms of complement activation by crystalline cholesterol. Mol Immunol 1985; 22 (02) 101-106
  • 29 Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91 (06) 2546-2551
  • 30 Sumimoto H, Takeshige K, Minakami S. Superoxide production of human polymorphonuclear leukocytes stimulated by leukotriene B4. Biochim Biophys Acta 1984; 803 (04) 271-277
  • 31 Shaw JO, Pinckard RN, Ferrigni KS, McManus LM, Hanahan DJ. Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-sn-glycerol-3-phosphorylcholine (platelet activating factor). J Immunol 1981; 127 (03) 1250-1255
  • 32 Braquet P, Hosford D, Braquet M, Bourgain R, Bussolino F. Role of cytokines and platelet-activating factor in microvascular immune injury. Int Arch Allergy Appl Immunol 1989; 88 (1,2): 88-100
  • 33 Braquet P, Hosford D, Koltz P, Guilbaud J, Paubert-Braquet M. Effect of platelet-activating factor on tumor necrosis factor-induced superoxide generation from human neutrophils. Possible involvement of G proteins. Lipids 1991; 26 (12) 1071-1075
  • 34 Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 2001; 280 (04) C719-C741
  • 35 Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320 (14) 915-924
  • 36 Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 2002; 1: 1
  • 37 Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation 2005; 112 (05) 651-657
  • 38 Shin HK, Kim YK, Kim KY, Lee JH, Hong KW. Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol. Circulation 2004; 109 (08) 1022-1028
  • 39 Toth PP. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease. Vasc Health Risk Manag 2016; 12: 171-183
  • 40 Dhindsa DShapiro MD. Triglycerides, remnant cholesterol and atherosclerotic cardiovascular disease. Expert analysis. Accessed May 25, 2021 at: https://www.acc.org/latest-in-cardiology/articles/2019/02/07/09/47/triglycerides-remnant-cholesterol-and-atherosclerotic-cv-disease
  • 41 Kavazarakis E, Moustaki M, Gourgiotis D. et al. The impact of serum lipid levels on circulating soluble adhesion molecules in childhood. Pediatr Res 2002; 52 (03) 454-458
  • 42 Rubin D, Claas S, Pfeuffer M, Nothnagel M, Foelsch UR, Schrezenmeir J. s-ICAM-1 and s-VCAM-1 in healthy men are strongly associated with traits of the metabolic syndrome, becoming evident in the postprandial response to a lipid-rich meal. Lipids Health Dis 2008; 7: 32
  • 43 Welty FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis?. Curr Cardiol Rep 2013; 15 (09) 400
  • 44 Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res 2006; 98 (11) 1352-1364
  • 45 Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 1995; 15 (11) 1987-1994
  • 46 Clay MA, Pyle DH, Rye KA, Vadas MA, Gamble JR, Barter PJ. Time sequence of the inhibition of endothelial adhesion molecule expression by reconstituted high density lipoproteins. Atherosclerosis 2001; 157 (01) 23-29
  • 47 Brites F, Martin M, Guillas I, Kontush A. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit. BBA Clin 2017; 8: 66-77
  • 48 Mackness B, Hine D, Liu Y, Mastorikou M, Mackness M. Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. Biochem Biophys Res Commun 2004; 318 (03) 680-683
  • 49 Lacko AG, Barter P, Ehnholm C, van Tol A. International symposium on basic aspects of HDL metabolism and disease prevention. J Lipid Res 2000; 41 (10) 1695-1699
  • 50 Tölle M, Pawlak A, Schuchardt M. et al. HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler Thromb Vasc Biol 2008; 28 (08) 1542-1548
  • 51 Wadham C, Albanese N, Roberts J. et al. High-density lipoproteins neutralize C-reactive protein proinflammatory activity. Circulation 2004; 109 (17) 2116-2122
  • 52 Prasad K. Low levels of serum soluble receptors for advanced glycation end products, biomarkers for disease state: myth or reality. Int J Angiol 2014; 23 (01) 11-16
  • 53 Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 1999; 84 (05) 489-497
  • 54 Katakami N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Atheroscler Thromb 2018; 25 (01) 27-39
  • 55 Prasad K. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG). Mol Cell Biochem 2000; 209 (1,2): 89-96
  • 56 Prasad K, Mantha SV, Muir AD, Westcott ND. Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol Cell Biochem 2000; 206 (1,2): 141-149
  • 57 Sobal G, Menzel J, Sinzinger H. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study. Prostaglandins Leukot Essent Fatty Acids 2000; 63 (04) 177-186
  • 58 Soran H, Durrington PN. Susceptibility of LDL and its subfractions to glycation. Curr Opin Lipidol 2011; 22 (04) 254-261
  • 59 Makita T, Tanaka A, Numano F. Effect of glycated low density lipoprotein on smooth muscle cell proliferation. Int Angiol 1999; 18 (04) 331-334
  • 60 Haberland ME, Fless GM, Scanu AM, Fogelman AM. Malondialdehyde modification of lipoprotein(a) produces avid uptake by human monocyte-macrophages. J Biol Chem 1992; 267 (06) 4143-4151
  • 61 Horiuchi S, Sakamoto Y, Sakai M. Scavenger receptors for oxidized and glycated proteins. Amino Acids 2003; 25 (3-4): 283-292
  • 62 Hofmann MA, Drury S, Fu C. et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999; 97 (07) 889-901
  • 63 Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 1994; 10: 405-455
  • 64 Basta G, Lazzerini G, Massaro M. et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 2002; 105 (07) 816-822
  • 65 Matsui T, Yamagishi S, Ueda S. et al. Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activated receptor-gamma activation. J Int Med Res 2007; 35 (04) 482-489
  • 66 Sasaki T, Horiuchi S, Yamazaki M, Yui S. Induction of GM-CSF production of macrophages by advanced glycation end products of the Maillard reaction. Biosci Biotechnol Biochem 1999; 63 (11) 2011-2013
  • 67 Wolf YG, Rasmussen LM, Ruoslahti E. Antibodies against transforming growth factor-beta 1 suppress intimal hyperplasia in a rat model. J Clin Invest 1994; 93 (03) 1172-1178
  • 68 Leopold JA, Loscalzo J. Oxidative mechanisms and atherothrombotic cardiovascular disease. Drug Discov Today Ther Strateg 2008; 5 (01) 5-13
  • 69 Piga R, Naito Y, Kokura S, Handa O, Yoshikawa T. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis 2007; 193 (02) 328-334
  • 70 Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal 2011; 15 (06) 1607-1638
  • 71 Greiber S, Müller B, Daemisch P, Pavenstädt H. Reactive oxygen species alter gene expression in podocytes: induction of granulocyte macrophage-colony-stimulating factor. J Am Soc Nephrol 2002; 13 (01) 86-95
  • 72 Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 2008; 31 (Suppl. 02) S181-S184
  • 73 Grossman E. Does increased oxidative stress cause hypertension?. Diabetes Care 2008; 31 (Suppl. 02) S185-S189
  • 74 Prasad K. Hypertension. In: Dieter RS, Dieter Jr. RA, Dieter III RA. eds. Peripheral Arterial Disease. China: Mcgraw-Hill Medical; 2009
  • 75 Prasad K, Mishra M. Do advanced glycation end products and its receptor play a role in pathophysiology of hypertension?. Int J Angiol 2017; 26 (01) 1-11
  • 76 Baradaran A, Nasri H, Rafieian-Kopaei M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J Res Med Sci 2014; 19 (04) 358-367
  • 77 Sagar S, Kallo IJ, Kaul N, Ganguly NK, Sharma BK. Oxygen free radicals in essential hypertension. Mol Cell Biochem 1992; 111 (1,2): 103-108
  • 78 McNulty M, Mahmud A, Feely J. Advanced glycation end-products and arterial stiffness in hypertension. Am J Hypertens 2007; 20 (03) 242-247
  • 79 Geroldi D, Falcone C, Emanuele E. et al. Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens 2005; 23 (09) 1725-1729
  • 80 Shalia KK, Mashru MR, Vasvani JB, Mokal RA, Mithbawkar SM, Thakur PK. Circulating levels of cell adhesion molecules in hypertension. Indian J Clin Biochem 2009; 24 (04) 388-397
  • 81 Parissis JT, Venetsanou KF, Kalantzi MV, Mentzikof DD, Karas SM. Serum profiles of granulocyte-macrophage colony-stimulating factor and C-C chemokines in hypertensive patients with or without significant hyperlipidemia. Am J Cardiol 2000; 85 (06) 777-779 , A9
  • 82 Tanase DM, Gosav EM, Radu S. et al. Arterial hypertension and interleukins: potential therapeutic target or future diagnostic marker?. Int J Hypertens 2019; 2019: 3159283
  • 83 Craig WY, Palomaki GE, Haddow JE. Cigarette smoking and serum lipid and lipoprotein concentrations: an analysis of published data. BMJ 1989; 298 (6676): 784-788
  • 84 Bermudez EA, Rifai N, Buring JE, Manson JE, Ridker PM. Relation between markers of systemic vascular inflammation and smoking in women. Am J Cardiol 2002; 89 (09) 1117-1119
  • 85 Mazzone A, Cusa C, Mazzucchelli I. et al. Cigarette smoking and hypertension influence nitric oxide release and plasma levels of adhesion molecules. Clin Chem Lab Med 2001; 39 (09) 822-826
  • 86 Tracy RP, Psaty BM, Macy E. et al. Lifetime smoking exposure affects the association of C-reactive protein with cardiovascular disease risk factors and subclinical disease in healthy elderly subjects. Arterioscler Thromb Vasc Biol 1997; 17 (10) 2167-2176
  • 87 Tappia PS, Troughton KL, Langley-Evans SC, Grimble RF. Cigarette smoking influences cytokine production and antioxidant defences. Clin Sci (Lond) 1995; 88 (04) 485-489
  • 88 Heitzer T, Ylä-Herttuala S, Luoma J. et al. Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation 1996; 93 (07) 1346-1353
  • 89 Kalra J, Chaudhary AK, Prasad K. Increased production of oxygen free radicals in cigarette smokers. Int J Exp Pathol 1991; 72 (01) 1-7
  • 90 Prasad K, Dhar I, Caspar-Bell G. Role of advanced glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. Int J Angiol 2015; 24 (02) 75-80
  • 91 Komiyama M, Takanabe R, Ono K. et al. Association between monocyte chemoattractant protein-1 and blood pressure in smokers. J Int Med Res 2018; 46 (03) 965-974
  • 92 Gordon T, Kannel WB. Obesity and cardiovascular diseases: the Framingham study. Clin Endocrinol Metab 1976; 5 (02) 367-375
  • 93 Ashley Jr. FW, Kannel WB. Relation of weight change to changes in atherogenic traits: the Framingham Study. J Chronic Dis 1974; 27 (03) 103-114
  • 94 Schmidt FM, Weschenfelder J, Sander C. et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS One 2015; 10 (03) e0121971
  • 95 Kim DH, Sandoval D, Reed JA. et al. The role of GM-CSF in adipose tissue inflammation. Am J Physiol Endocrinol Metab 2008; 295 (05) E1038-E1046
  • 96 Catalán V, Gómez-Ambrosi J, Ramirez B. et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg 2007; 17 (11) 1464-1474
  • 97 Mulhem A, Moulla Y, Klöting N. et al. Circulating cell adhesion molecules in metabolically healthy obesity. Int J Obes 2021; 45 (02) 331-336
  • 98 Marseglia L, Manti S, D'Angelo G. et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 2014; 16 (01) 378-400
  • 99 Yamagishi SI, Matsui T. Role of hyperglycemia-induced advanced glycation end product (AGE) accumulation in atherosclerosis. Ann Vasc Dis 2018; 11 (03) 253-258
  • 100 Prasad K. AGE-RAGE stress play a role in aortic aneurysm: a comprehensive review and novel potential therapeutic target. Rev Cardiovasc Med 2019; 20 (04) 201-208
  • 101 Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med 2004; 116 (suppl 6A): 9S-16S
  • 102 Zwaka TP, Hombach V, Torzewski J. C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 2001; 103 (09) 1194-1197
  • 103 Devaraj S, O'Keefe G, Jialal I. Defining the proinflammatory phenotype using high sensitive C-reactive protein levels as the biomarker. J Clin Endocrinol Metab 2005; 90 (08) 4549-4554
  • 104 Ballou SP, Lozanski G. Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 1992; 4 (05) 361-368
  • 105 Pasceri V, Cheng JS, Willerson JT, Yeh ET. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 2001; 103 (21) 2531-2534
  • 106 Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102 (18) 2165-2168
  • 107 Sakurai S, Kitamura A, Cui R, Yamagishi K, Tanigawa T, Iso H. Relationships of soluble E-selectin and high-sensitivity C-reactive protein with carotid atherosclerosis in Japanese men. J Atheroscler Thromb 2009; 16 (04) 339-345
  • 108 Guthikonda S, Haynes WG. Homocysteine: role and implications in atherosclerosis. Curr Atheroscler Rep 2006; 8 (02) 100-106
  • 109 Jacobsen DW. Hyperhomocysteinemia and oxidative stress: time for a reality check?. Arterioscler Thromb Vasc Biol 2000; 20 (05) 1182-1184
  • 110 Tsen CM, Hsieh CC, Yen CH, Lau YT. Homocysteine altered ROS generation and NO accumulation in endothelial cells. Chin J Physiol 2003; 46 (03) 129-136
  • 111 Koga T, Claycombe K, Meydani M. Homocysteine increases monocyte and T-cell adhesion to human aortic endothelial cells. Atherosclerosis 2002; 161 (02) 365-374
  • 112 Alkhoury K, Parkin SM, Homer-Vanniasinkam S, Graham AM. Chronic homocysteine exposure upregulates endothelial adhesion molecules and mediates leukocyte: endothelial cell interactions under flow conditions. Eur J Vasc Endovasc Surg 2011; 41 (03) 429-435
  • 113 Wang G, Siow YL, Karmin O. Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappaB in THP-1 macrophages. Am J Physiol Heart Circ Physiol 2001; 280 (06) H2840-H2847
  • 114 Holven KB, Scholz H, Halvorsen B, Aukrust P, Ose L, Nenseter MS. Hyperhomocysteinemic subjects have enhanced expression of lectin-like oxidized LDL receptor-1 in mononuclear cells. J Nutr 2003; 133 (11) 3588-3591
  • 115 Pothineni NVK, Subramany S, Kuriakose K. et al. Infections, atherosclerosis, and coronary heart disease. Eur Heart J 2017; 38 (43) 3195-3201
  • 116 Laurila A, Bloigu A, Näyhä S, Hassi J, Leinonen M, Saikku P. Chronic Chlamydia pneumoniae infection is associated with a serum lipid profile known to be a risk factor for atherosclerosis. Arterioscler Thromb Vasc Biol 1997; 17 (11) 2910-2913
  • 117 Laurila A, Bloigu A, Näyhä S, Hassi J, Leinonen M, Saikku P. Chlamydia pneumoniae antibodies and serum lipids in Finnish men: cross sectional study. BMJ 1997; 314 (7092): 1456-1457
  • 118 Kaukoranta-Tolvanen SS, Teppo AM, Laitinen K, Saikku P, Linnavuori K, Leinonen M. Growth of Chlamydia pneumoniae in cultured human peripheral blood mononuclear cells and induction of a cytokine response. Microb Pathog 1996; 21 (03) 215-221
  • 119 Spooner R, Yilmaz O. The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 2011; 12 (01) 334-352
  • 120 Memon RA, Staprans I, Noor M. et al. Infection and inflammation induce LDL oxidation in vivo. Arterioscler Thromb Vasc Biol 2000; 20 (06) 1536-1542
  • 121 Adinolfi LE, Restivo L, Zampino R. et al. Chronic HCV infection is a risk of atherosclerosis. Role of HCV and HCV-related steatosis. Atherosclerosis 2012; 221 (02) 496-502
  • 122 Campbell LA, Lee AW, Rosenfeld ME, Kuo CC. Chlamydia pneumoniae induces expression of pro-atherogenic factors through activation of the lectin-like oxidized LDL receptor-1. Pathog Dis 2013; 69 (01) 1-6
  • 123 Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 2000; 101 (25) 2889-2895
  • 124 Van de Wiel A. The effect of alcohol on postprandial and fasting triglycerides. Int J Vasc Med 2012; 2012: 862504
  • 125 Hao G, Wang Z, Zhang L. et al. Relationship between alcohol consumption and serum lipid profiles among middle-aged population in china: a multiple-center cardiovascular epidemiological study. Angiology 2015; 66 (08) 753-758
  • 126 Hernández JA, López-Sánchez RC, Rendón-Ramírez A. Lipids and oxidative stress associated with ethanol-induced neurological damage. Oxid Med Cell Longev 2016; 2016: 1543809
  • 127 Winston GW, Cederbaum AI. A correlation between hydroxyl radical generation and ethanol oxidation by liver, lung and kidney microsomes. Biochem Pharmacol 1982; 31 (11) 2031-2037
  • 128 Prasad K. Oxygen free radicals and peripheral vascular disease. In: Chang JB. ed. Textbook of Angiology. New York, NY: Springer-VerlagInc.; 2000: 427-438
  • 129 Cai L, Ma D, Zhang Y, Liu Z, Wang P. The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2012; 66 (08) 872-877
  • 130 Miyake Y, Kono S, Nishiwaki M. et al. Relationship of coffee consumption with serum lipids and lipoproteins in Japanese men. Ann Epidemiol 1999; 9 (02) 121-126
  • 131 Corrêa TA, Rogero MM, Mioto BM. et al. Paper-filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: a clinical trial. Nutrition 2013; 29 (7,8): 977-981
  • 132 Fried RE, Levine DM, Kwiterovich PO. et al. The effect of filtered-coffee consumption on plasma lipid levels. Results of a randomized clinical trial. JAMA 1992; 267 (06) 811-815
  • 133 Hartley TR, Sung BH, Pincomb GA, Whitsett TL, Wilson MF, Lovallo WR. Hypertension risk status and effect of caffeine on blood pressure. Hypertension 2000; 36 (01) 137-141
  • 134 Abreu RV, Silva-Oliveira EM, Moraes MFD, Pereira GS, Moraes-Santos T. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav 2011; 99 (04) 659-664
  • 135 Arnett DK, Blumenthal RS, Albert MA. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 140 (11) e563-e595
  • 136 Prasad K. Resveratrol, wine, and atherosclerosis. Int J Angiol 2012; 21 (01) 7-18
  • 137 11 Foods to increase your HDL. Accessed May 25, 2021 at: https://www.healthline.com/health/high-cholesterol/foods-to-increase-hdl
  • 138 Weisenberger J. Foods High in AGEs. Accessed May 25, 2021 at: http://archives.diabetesforecast.org/2014/11-nov/foods-high-in-ages.html#:∼:text=Protein%2Drich%20foods%3A%20Red%20meat,breads%20are%20low%20in%20AGEs
  • 139 Uribarri J, Woodruff S, Goodman S. et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 2010; 110 (06) 911-16.e12 , e912
  • 140 Prasad K, Tiwari S. Therapeutic interventions for advanced glycation-end products and its receptor- mediated cardiovascular disease. Curr Pharm Des 2017; 23 (06) 937-943
  • 141 Poljsak B. Strategies for reducing or preventing the generation of oxidative stress. Oxid Med Cell Longev 2011; 2011: 194586
  • 142 Prasad K. Flaxseed and cardiovascular health. J Cardiovasc Pharmacol 2009; 54 (05) 369-377
  • 143 Smith Jr. SC, Benjamin EJ, Bonow RO. et al; World Heart Federation and the Preventive Cardiovascular Nurses Association. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation 2011; 124 (22) 2458-2473
  • 144 Hall SL, Lorenc T. Secondary prevention of coronary artery disease. Am Fam Physician 2010; 81 (03) 289-296
  • 145 Jankowski P, Czarnecka D, Badacz L. et al. Practice setting and secondary prevention of coronary artery disease. Arch Med Sci 2018; 14 (05) 979-987
  • 146 Jones RAK, Davis DM, Blumenthal RS, Martin SS. Clinician guide to the ABCs of primary and secondary prevention of atherosclerotic cardiovascular disease. Accessed May 25, 2021 at: https://www.acc.org/latest-in-cardiology/articles/2018/03/30/18/34/clinician-guide-to-the-abcs
  • 147 Prasad K. Flaxseed: a source of hypocholesterolemic and antiatherogenic agents. Drug News Perspect 2000; 13 (02) 99-104
  • 148 Mach F, Baigent C, Catapano AL. et al; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41 (01) 111-188
  • 149 Kondoh Y, Kawase M, Ohmori S. D-lactate concentrations in blood, urine and sweat before and after exercise. Eur J Appl Physiol Occup Physiol 1992; 65 (01) 88-93
  • 150 Salama MEE-DM, Salama AF. A comparison between the impact of two different exercise protocols on advanced glycation end products in type 2 diabetic rats. Life Sci J 2013; 10 (03) 860-869
  • 151 Ramful D, Tarnus E, Rondeau P, Da Silva CR, Bahorun T, Bourdon E. Citrus fruit extracts reduce advanced glycation end products (AGEs)- and H2O2-induced oxidative stress in human adipocytes. J Agric Food Chem 2010; 58 (20) 11119-11129
  • 152 Prasanna G, Saraswathi NT. Linolenic acid prevents early and advanced glycation end-products (AGEs) modification of albumin. Int J Biol Macromol 2017; 95: 121-125
  • 153 Prasad K, Bhanumathy KK. AGE-RAGE axis in the pathophysiology of chronic lower limb ischemia and a novel strategy for its treatment. Int J Angiol 2020; 29 (03) 156-167
  • 154 Nozue T, Yamagishi S-i, Takeuchi M. et al. Effect of statins on the serum soluble form of receptor for advanced glycation end-products and its association with coronary atherosclerosis in patients with angina pectoris. IJC Metab Endocr 2014; 4: 47-52
  • 155 Tam HL, Shiu SW, Wong Y, Chow WS, Betteridge DJ, Tan KC. Effects of atorvastatin on serum soluble receptors for advanced glycation end-products in type 2 diabetes. Atherosclerosis 2010; 209 (01) 173-177
  • 156 Quade-Lyssy P, Kanarek AM, Baiersdörfer M, Postina R, Kojro E. Statins stimulate the production of a soluble form of the receptor for advanced glycation end products. J Lipid Res 2013; 54 (11) 3052-3061
  • 157 Forbes JM, Thorpe SR, Thallas-Bonke V. et al. Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy. J Am Soc Nephrol 2005; 16 (08) 2363-2372
  • 158 Tan KCB, Chow WS, Tso AWK. et al. Thiazolidinedione increases serum soluble receptor for advanced glycation end-products in type 2 diabetes. Diabetologia 2007; 50 (09) 1819-1825
  • 159 Azen SP, Qian D, Mack WJ. et al. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation 1996; 94 (10) 2369-2372
  • 160 Gale CR, Ashurst HE, Powers HJ, Martyn CN. Antioxidant vitamin status and carotid atherosclerosis in the elderly. Am J Clin Nutr 2001; 74 (03) 402-408
  • 161 Saboori S, Shab-Bidar S, Speakman JR, Yousefi Rad E, Djafarian K. Effect of vitamin E supplementation on serum C-reactive protein level: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2015; 69 (08) 867-873
  • 162 Myung SK, Ju W, Cho B. et al; Korean Meta-Analysis Study Group. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 2013; 346: f10
  • 163 Mitu O, Cirneala IA, Lupsan AI. et al. The effect of vitamin supplementation on subclinical atherosclerosis in patients without manifest cardiovascular diseases: never-ending hope or underestimated effect?. Molecules 2020; 25 (07) E1717
  • 164 Niki E. Interaction of ascorbate and alpha-tocopherol. Ann N Y Acad Sci 1987; 498: 186-199
  • 165 Salonen RM, Nyyssönen K, Kaikkonen J. et al; Antioxidant Supplementation in Atherosclerosis Prevention Study. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation 2003; 107 (07) 947-953
  • 166 Mashima R, Witting PK, Stocker R. Oxidants and antioxidants in atherosclerosis. Curr Opin Lipidol 2001; 12 (04) 411-418
  • 167 Heinecke JW. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 1998; 141 (01) 1-15
  • 168 Prasad K, Mantha SV, Kalra J, Lee P. Prevention of hypercholesterolemic atherosclerosis by garlic, an antixoidant. J Cardiovasc Pharmacol Ther 1997; 2 (04) 309-320
  • 169 Prasad K. C-reactive protein (CRP)-lowering agents. Cardiovasc Drug Rev 2006; 24 (01) 33-50
  • 170 Block G, Jensen CD, Dalvi TB. et al. Vitamin C treatment reduces elevated C-reactive protein. Free Radic Biol Med 2009; 46 (01) 70-77
  • 171 Gu X, Cheng L, Chueng WL. et al. Neovascularization of ischemic myocardium by newly isolated tannins prevents cardiomyocyte apoptosis and improves cardiac function. Mol Med 2006; 12 (11-12): 275-283
  • 172 Shi W, Xin Q, Yuan R, Yuan Y, Cong W, Chen K. Neovascularization: the main mechanism of MSCs in ischemic heart disease therapy. Front Cardiovasc Med 2021; 8 (10) 633300
  • 173 Tempel D, de Boer M, van Deel ED. et al. Apelin enhances cardiac neovascularization after myocardial infarction by recruiting aplnr+ circulating cells. Circ Res 2012; 111 (05) 585-598
  • 174 Penumathsa SV, Koneru S, Zhan L. et al. Secoisolariciresinol diglucoside induces neovascularization-mediated cardioprotection against ischemia-reperfusion injury in hypercholesterolemic myocardium. J Mol Cell Cardiol 2008; 44 (01) 170-179