Semin Musculoskelet Radiol 2021; 25(03): 397-408
DOI: 10.1055/s-0041-1730913
Review Article

3D MRI of Articular Cartilage

Richard Kijowski
1   Department of Radiology, New York University Grossman School of Medicine, New York, New York
› Institutsangaben

Abstract

Osteoarthritis, characterized by the breakdown of articular cartilage and other joint structures, is one of the most prevalent and disabling chronic diseases in the United States. Magnetic resonance imaging is a commonly used imaging modality to evaluate patients with joint pain. Both two-dimensional fast spin-echo sequences (2D-FSE) and three-dimensional (3D) sequences are used in clinical practice to evaluate articular cartilage. The 3D sequences have many advantages compared with 2D-FSE sequences, such as their high in-plane spatial resolution, thin continuous slices that reduce the effects of partial volume averaging, and ability to create multiplanar reformat images following a single acquisition. This article reviews the different 3D imaging techniques available for evaluating cartilage morphology, illustrates the strengths and weaknesses of 3D approaches compared with 2D-FSE approaches for cartilage imaging, and summarizes the diagnostic performance of 2D-FSE and 3D sequences for detecting cartilage lesions within the knee and hip joints.



Publikationsverlauf

Artikel online veröffentlicht:
21. September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum 1998; 41 (08) 1343-1355
  • 2 Felson DT. An update on the pathogenesis and epidemiology of osteoarthritis. Radiol Clin North Am 2004; 42 (01) 1-9 , v
  • 3 Felson DT, Hodgson R. Identifying and treating preclinical and early osteoarthritis. Rheum Dis Clin North Am 2014; 40 (04) 699-710
  • 4 Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998; 80 (09) 1276-1284
  • 5 Sonin AH, Pensy RA, Mulligan ME, Hatem S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 2002; 179 (05) 1159-1166
  • 6 Bredella MA, Tirman PF, Peterfy CG. et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 1999; 172 (04) 1073-1080
  • 7 Mohr A. The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 2003; 32 (07) 396-402
  • 8 Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 2009; 250 (03) 839-848
  • 9 Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol 2009; 38 (08) 761-769
  • 10 Kornaat PR, Bloem JL, Ceulemans RY. et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 2006; 239 (03) 811-817
  • 11 Link TM, Steinbach LS, Ghosh S. et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003; 226 (02) 373-381
  • 12 Disler DG, McCauley TR, Kelman CG. et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 1996; 167 (01) 127-132
  • 13 Christensen R, Bartels EM, Astrup A, Bliddal H. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis 2007; 66 (04) 433-439
  • 14 Roddy E, Zhang W, Doherty M. Aerobic walking or strengthening exercise for osteoarthritis of the knee? A systematic review. Ann Rheum Dis 2005; 64 (04) 544-548
  • 15 Fransen M, McConnell S. Land-based exercise for osteoarthritis of the knee: a metaanalysis of randomized controlled trials. J Rheumatol 2009; 36 (06) 1109-1117
  • 16 Qvist P, Bay-Jensen AC, Christiansen C, Dam EB, Pastoureau P, Karsdal MA. The disease modifying osteoarthritis drug (DMOAD): is it in the horizon?. Pharmacol Res 2008; 58 (01) 1-7
  • 17 Hunter DJ, Hellio Le Graverand-Gastineau MP. How close are we to having structure-modifying drugs available?. Med Clin North Am 2009; 93 (01) 223-234 , xiii
  • 18 Marcacci M, Kon E, Delcogliano M, Filardo G, Busacca M, Zaffagnini S. Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up. Am J Sports Med 2007; 35 (12) 2014-2021
  • 19 Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 25-32
  • 20 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331 (14) 889-895
  • 21 Browne JE, Anderson AF, Arciero R. et al. Clinical outcome of autologous chondrocyte implantation at 5 years in US subjects. Clin Orthop Relat Res 2005; (436) 237-245
  • 22 Philippon MJ, Briggs KK, Yen YM, Kuppersmith DA. Outcomes following hip arthroscopy for femoroacetabular impingement with associated chondrolabral dysfunction: minimum two-year follow-up. J Bone Joint Surg Br 2009; 91 (01) 16-23
  • 23 Brunner A, Horisberger M, Herzog RF. Sports and recreation activity of patients with femoroacetabular impingement before and after arthroscopic osteoplasty. Am J Sports Med 2009; 37 (05) 917-922
  • 24 Clohisy JC, St John LC, Schutz AL. Surgical treatment of femoroacetabular impingement: a systematic review of the literature. Clin Orthop Relat Res 2010; 468 (20) 555-564
  • 25 Riboh JC, Cvetanovich GL, Cole BJ, Yanke AB. Comparative efficacy of cartilage repair procedures in the knee: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25 (12) 3786-3799
  • 26 Hargreaves BA, Gold GE, Beaulieu CF, Vasanawala SS, Nishimura DG, Pauly JM. Comparison of new sequences for high-resolution cartilage imaging. Magn Reson Med 2003; 49 (04) 700-709
  • 27 Kijowski R, Lu A, Block W, Grist T. Evaluation of the articular cartilage of the knee joint with vastly undersampled isotropic projection reconstruction steady-state free precession imaging. J Magn Reson Imaging 2006; 24 (01) 168-175
  • 28 Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996; 198 (01) 209-212
  • 29 Yoshioka H, Alley M, Steines D. et al. Imaging of the articular cartilage in osteoarthritis of the knee joint: 3D spatial-spectral spoiled gradient-echo vs. fat-suppressed 3D spoiled gradient-echo MR imaging. J Magn Reson Imaging 2003; 18 (01) 66-71
  • 30 Kornaat PR, Doornbos J, van der Molen AJ. et al. Magnetic resonance imaging of knee cartilage using a water selective balanced steady-state free precession sequence. J Magn Reson Imaging 2004; 20 (05) 850-856
  • 31 Vasanawala SS, Pauly JM, Nishimura DG. Linear combination steady-state free precession MRI. Magn Reson Med 2000; 43 (01) 82-90
  • 32 Lu A, Barger AV, Grist TM, Block WF. Improved spectral selectivity and reduced susceptibility in SSFP using a near zero TE undersampled three-dimensional PR sequence. J Magn Reson Imaging 2004; 19 (01) 117-123
  • 33 Siepmann DB, McGovern J, Brittain JH, Reeder SB. High-resolution 3D cartilage imaging with IDEAL SPGR at 3 T. AJR Am J Roentgenol 2007; 189 (06) 1510-1515
  • 34 Kijowski R, Tuite M, Passov L, Shimakawa A, Yu H, Reeder SB. Cartilage imaging at 3.0T with gradient refocused acquisition in the steady-state (GRASS) and IDEAL fat-water separation. J Magn Reson Imaging 2008; 28 (01) 167-174
  • 35 Gold GE, Reeder SB, Yu H. et al. Articular cartilage of the knee: rapid three-dimensional MR imaging at 3.0 T with IDEAL balanced steady-state free precession--initial experience. Radiology 2006; 240 (02) 546-551
  • 36 Gustas CN, Blankenbaker DG, Rio AM, Winalski CS, Kijowski R. Evaluation of the articular cartilage of the knee joint using an isotropic resolution 3D fast spin-echo sequence with conventional and radial reformatted images. AJR Am J Roentgenol 2015; 205 (02) 371-379
  • 37 Recht MP, Kramer J, Marcelis S. et al. Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 1993; 187 (02) 473-478
  • 38 Disler DG, McCauley TR, Wirth CR, Fuchs MD. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 1995; 165 (02) 377-382
  • 39 Peterfy CG, van Dijke CF, Janzen DL. et al. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 1994; 192 (02) 485-491
  • 40 Marshall KW, Mikulis DJ, Guthrie BM. Quantitation of articular cartilage using magnetic resonance imaging and three-dimensional reconstruction. J Orthop Res 1995; 13 (06) 814-823
  • 41 Chen CA, Kijowski R, Shapiro LM. et al. Cartilage morphology at 3.0T: assessment of three-dimensional magnetic resonance imaging techniques. J Magn Reson Imaging 2010; 32 (01) 173-183
  • 42 Mosher TJ, Pruett SW. Magnetic resonance imaging of superficial cartilage lesions: role of contrast in lesion detection. J Magn Reson Imaging 1999; 10 (02) 178-182
  • 43 Hardy PA, Recht MP, Piraino D, Thomasson D. Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging 1996; 6 (02) 329-335
  • 44 Yoshioka H, Stevens K, Hargreaves BA. et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 2004; 20 (05) 857-864
  • 45 Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 2005; 21 (04) 476-481
  • 46 Hargreaves BA, Gold GE, Lang PK. et al. MR imaging of articular cartilage using driven equilibrium. Magn Reson Med 1999; 42 (04) 695-703
  • 47 Chen CA, Lu W, John CT. et al. Multiecho IDEAL gradient-echo water-fat separation for rapid assessment of cartilage volume at 1.5 T: initial experience. Radiology 2009; 252 (02) 561-567
  • 48 Chaudhari AS, Fang Z, Kogan F. et al. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med 2018; 80 (05) 2139-2154
  • 49 Chaudhari AS, Black MS, Eijgenraam S. et al. Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. J Magn Reson Imaging 2018; 47 (05) 1328-1341
  • 50 Welsch GH, Scheffler K, Mamisch TC. et al. Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla. Magn Reson Med 2009; 62 (02) 544-549
  • 51 Colotti R, Omoumi P, van Heeswijk RB, Bastiaansen JAM. Simultaneous fat-free isotropic 3D anatomical imaging and T2 mapping of knee cartilage with lipid-insensitive binomial off-resonant RF excitation (LIBRE) pulses. J Magn Reson Imaging 2019; 49 (05) 1275-1284
  • 52 Duc SR, Koch P, Schmid MR, Horger W, Hodler J, Pfirrmann CW. Diagnosis of articular cartilage abnormalities of the knee: prospective clinical evaluation of a 3D water-excitation true FISP sequence. Radiology 2007; 243 (02) 475-482
  • 53 Li X, Yu C, Wu H. et al. Prospective comparison of 3D FIESTA versus fat-suppressed 3D SPGR MRI in evaluating knee cartilage lesions. Clin Radiol 2009; 64 (10) 1000-1008
  • 54 Gold GE, Hargreaves BA, Vasanawala SS. et al. Articular cartilage of the knee: evaluation with fluctuating equilibrium MR imaging--initial experience in healthy volunteers. Radiology 2006; 238 (02) 712-718
  • 55 Al saleh H, Hernandez L, Lee KS, Rosas HG, Block WF, Kijowski R. Rapid isotropic resolution cartilage assessment using radial alternating repetition time balanced steady-state free-precession imaging. J Magn Reson Imaging 2014; 40 (04) 796-803
  • 56 Gold GE, Busse RF, Beehler C. et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol 2007; 188 (05) 1287-1293
  • 57 Kijowski R, Davis KW, Woods MA. et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 2009; 252 (02) 486-495
  • 58 Notohamiprodjo M, Horng A, Pietschmann MF. et al. MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Invest Radiol 2009; 44 (09) 585-597
  • 59 Lee YH, Hahn S, Lim D, Suh JS. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE). Acta Radiol 2017; 58 (02) 190-196
  • 60 Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol 2016; 51 (10) 609-617
  • 61 Fritz J, Ahlawat S, Fritz B. et al. 10-Min 3D turbo spin echo MRI of the knee in children: arthroscopy-validated accuracy for the diagnosis of internal derangement. J Magn Reson Imaging 2019; 49 (07) e139-e151
  • 62 Del Grande F, Delcogliano M, Guglielmi R. et al. Fully automated 10-minute 3D CAIPIRINHA SPACE TSE MRI of the knee in adults: a multicenter, multireader, multifield-strength validation study. Invest Radiol 2018; 53 (11) 689-697
  • 63 Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol 2021; 216 (03) 718-733
  • 64 Kijowski R, Rosas H, Samsonov A, King K, Peters R, Liu F. Knee imaging: rapid three-dimensional fast spin-echo using compressed sensing. J Magn Reson Imaging 2017; 45 (06) 1712-1722
  • 65 Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction—first experience. Invest Radiol 2016; 51 (06) 400-409
  • 66 Kijowski R, Blankenbaker DG, Woods MA, Shinki K, De Smet AA, Reeder SB. 3.0-T evaluation of knee cartilage by using three-dimensional IDEAL GRASS imaging: comparison with fast spin-echo imaging. Radiology 2010; 255 (01) 117-127
  • 67 Duc SR, Pfirrmann CW, Schmid MR. et al. Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology 2007; 245 (01) 216-223
  • 68 Murphy BJ. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 2001; 30 (06) 305-311
  • 69 Duc SR, Pfirrmann CW, Koch PP, Zanetti M, Hodler J. Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology 2008; 246 (02) 526-535
  • 70 Kijowski R, Blankenbaker DG, Klaers JL, Shinki K, De Smet AA, Block WF. Vastly undersampled isotropic projection steady-state free precession imaging of the knee: diagnostic performance compared with conventional MR. Radiology 2009; 251 (01) 185-194
  • 71 Kohl S, Meier S, Ahmad SS. et al. Accuracy of cartilage-specific 3-Tesla 3D-DESS magnetic resonance imaging in the diagnosis of chondral lesions: comparison with knee arthroscopy. J Orthop Surg Res 2015; 10: 191
  • 72 Ai T, Zhang W, Priddy NK, Li X. Diagnostic performance of CUBE MRI sequences of the knee compared with conventional MRI. Clin Radiol 2012; 67 (12) e58-e63
  • 73 Homsi R, Gieseke J, Luetkens JA. et al. Three-dimensional isotropic fat-suppressed proton density-weighted MRI at 3 Tesla using a T/R-coil can replace multiple plane two-dimensional sequences in knee imaging. RoFo Fortschr Geb Rontgenstr Nuklearmed 2016; 188 (10) 949-956
  • 74 Jung JY, Yoon YC, Kim HR, Choe BK, Wang JH, Jung JY. Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging. Radiology 2013; 268 (03) 802-813
  • 75 Milewski MD, Smitaman E, Moukaddam H. et al. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3T system scientific research. Eur J Radiol 2012; 81 (07) 1637-1643
  • 76 Kudo H, Inaoka T, Kitamura N. et al. Clinical value of routine use of thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique for internal \derangements of the knee joint at 3T. Magn Reson Imaging 2013; 31 (08) 1309-1317
  • 77 Lee JH, Yoon YC, Park KJ, Wang JH. Diagnosis of internal derangement of the knee: volume isotropic turbo spin-echo acquisition MRI with fat suppression versus without fat suppression. AJR Am J Roentgenol 2017; 208 (06) 1304-1311
  • 78 Van Dyck P, Gielen JL, Vanhoenacker FM. et al. Diagnostic performance of 3D SPACE for comprehensive knee joint assessment at 3 T. Insights Imaging 2012; 3 (06) 603-610
  • 79 Zheng ZZ, Shan H, Li X. Fat-suppressed 3D T1-weighted gradient-echo imaging of the cartilage with a volumetric interpolated breath-hold examination. AJR Am J Roentgenol 2010; 194 (05) W414-W419
  • 80 Nishii T, Nakanishi K, Sugano N, Masuhara K, Ohzono K, Ochi T. Articular cartilage evaluation in osteoarthritis of the hip with MR imaging under continuous leg traction. Magn Reson Imaging 1998; 16 (08) 871-875
  • 81 Mintz DN, Hooper T, Connell D, Buly R, Padgett DE, Potter HG. Magnetic resonance imaging of the hip: detection of labral and chondral abnormalities using noncontrast imaging. Arthroscopy 2005; 21 (04) 385-393
  • 82 Schleich C, Hesper T, Hosalkar HS. et al. 3D double-echo steady-state sequence assessment of hip joint cartilage and labrum at 3 Tesla: comparative analysis of magnetic resonance imaging and intraoperative data. Eur Radiol 2017; 27 (10) 4360-4371
  • 83 Zlatkin MB, Pevsner D, Sanders TG, Hancock CR, Ceballos CE, Herrera MF. Acetabular labral tears and cartilage lesions of the hip: indirect MR arthrographic correlation with arthroscopy—a preliminary study. AJR Am J Roentgenol 2010; 194 (03) 709-714
  • 84 Blankenbaker DG, Ullrick SR, Kijowski R. et al. MR arthrography of the hip: comparison of IDEAL-SPGR volume sequence to standard MR sequences in the detection and grading of cartilage lesions. Radiology 2011; 261 (03) 863-871
  • 85 Keeney JA, Peelle MW, Jackson J, Rubin D, Maloney WJ, Clohisy JC. Magnetic resonance arthrography versus arthroscopy in the evaluation of articular hip pathology. Clin Orthop Relat Res 2004; (429) 163-169
  • 86 Knuesel PR, Pfirrmann CW, Noetzli HP. et al. MR arthrography of the hip: diagnostic performance of a dedicated water-excitation 3D double-echo steady-state sequence to detect cartilage lesions. AJR Am J Roentgenol 2004; 183 (06) 1729-1735
  • 87 McCarthy JC, Glassner PJ. Correlation of magnetic resonance arthrography with revision hip arthroscopy. Clin Orthop Relat Res 2013; 471 (12) 4006-4011
  • 88 Schmid MR, Nötzli HP, Zanetti M, Wyss TF, Hodler J. Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology 2003; 226 (02) 382-386
  • 89 Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol 1997; 169 (04) 1089-1096
  • 90 Anderson LA, Peters CL, Park BB, Stoddard GJ, Erickson JA, Crim JR. Acetabular cartilage delamination in femoroacetabular impingement. Risk factors and magnetic resonance imaging diagnosis. J Bone Joint Surg Am 2009; 91 (02) 305-313
  • 91 Abraham CL, Bangerter NK, McGavin LS. et al. Accuracy of 3D dual echo steady state (DESS) MR arthrography to quantify acetabular cartilage thickness. J Magn Reson Imaging 2015; 42 (05) 1329-1338
  • 92 Shakoor D, Guermazi A, Kijowski R. et al. Diagnostic performance of three-dimensional MRI for depicting cartilage defects in the knee: a meta-analysis. Radiology 2018; 289 (01) 71-82
  • 93 Kijowski R, Blankenbaker DG, Woods M, Del Rio AM, De Smet AA, Reeder SB. Clinical usefulness of adding 3D cartilage imaging sequences to a routine knee MR protocol. AJR Am J Roentgenol 2011; 196 (01) 159-167