Semin Musculoskelet Radiol 2021; 25(03): 388-396
DOI: 10.1055/s-0041-1730912
Review Article

3D MRI Models of the Musculoskeletal System

1   Department of Radiology, NYU Langone Medical Center, New York, New York
› Institutsangaben

Abstract

Computed tomography (CT) is most commonly used to produce three-dimensional (3D) models for evaluating bone and joint morphology in clinical practice. However, 3D models created from magnetic resonance imaging (MRI) data can be equally effective for comprehensive and accurate assessment of osseous and soft tissue structure morphology and pathology. The quality of 3D MRI models has steadily increased over time, with growing potential to replace 3D CT models in various musculoskeletal (MSK) applications. In practice, a single MRI examination for two-dimensional and 3D assessments can increase the value of MRI and simplify the pre- and postoperative imaging work-up. Multiple studies have shown excellent performance of 3D MRI models in shoulder injuries, in the hip in the setting of femoroacetabular impingement, and in the knee for the creation of bone surface models. Therefore, the utility of 3D MRI postprocessed models is expected to continue to rise and broaden in applications. Computer-based and artificial intelligence–assisted postprocessing techniques have tremendous potential to improve the efficiency of 3D model creation, opening many research avenues to validate the applicability of 3D MRI and establish 3D-specific quantitative assessment criteria. We provide a practice-focused overview of 3D MRI acquisition strategies, postprocessing techniques for 3D model creation, MSK applications of 3D MRI models, and an illustration of cases from our daily clinical practice.



Publikationsverlauf

Artikel online veröffentlicht:
21. September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Pretorius ES, Fishman EK. Volume-rendered three-dimensional spiral CT: musculoskeletal applications. Radiographics 1999; 19 (05) 1143-1160
  • 2 Naraghi A, White LM. Three-dimensional MRI of the musculoskeletal system. AJR Am J Roentgenol 2012; 199 (03) W283-W293
  • 3 Samim M, Eftekhary N, Vigdorchik JM. et al. 3D-MRI versus 3D-CT in the evaluation of osseous anatomy in femoroacetabular impingement using Dixon 3D FLASH sequence. Skeletal Radiol 2019; 48 (03) 429-436
  • 4 Gyftopoulos S, Yemin A, Mulholland T. et al. 3DMR osseous reconstructions of the shoulder using a gradient-echo based two-point Dixon reconstruction: a feasibility study. Skeletal Radiol 2013; 42 (03) 347-352
  • 5 Breighner RE, Endo Y, Konin GP, Gulotta LV, Koff MF, Potter HG. Technical developments: zero echo time imaging of the shoulder: enhanced osseous detail by using MR Imaging. Radiology 2018; 286 (03) 960-966
  • 6 Radetzki F, Saul B, Hagel A. et al. Three-dimensional virtual simulation and evaluation of the femoroacetabular impingement based on “black bone” MRA. Arch Orthop Trauma Surg 2015; 135 (05) 667-671
  • 7 Malloy P, Gasienica J, Dawe R. et al. 1.5 T magnetic resonance imaging generates accurate 3D proximal femoral models: surgical planning implications for femoroacetabular impingement. J Orthop Res 2020; 38 (09) 2050-2056
  • 8 Rathnayaka K, Momot KI, Noser H. et al. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models. Med Eng Phys 2012; 34 (03) 357-363
  • 9 Wadhwa V, Malhotra V, Xi Y, Nordeck S, Coyner K, Chhabra A. Bone and joint modeling from 3D knee MRI: feasibility and comparison with radiographs and 2D MRI. Clin Imaging 2016; 40 (04) 765-768
  • 10 Cantarelli Rodrigues T, Deniz CM, Alaia EF. et al. Three-dimensional MRI bone models of the glenohumeral joint using deep learning: evaluation of normal anatomy and glenoid bone loss. Radiol Artif Intell 2020; 2 (05) e190116
  • 11 Kashyap S, Zhang H, Rao K, Sonka M. Learning-based cost functions for 3-D and 4-D multi-surface multi-object segmentation of knee MRI: data from the Osteoarthritis Initiative. IEEE Trans Med Imaging 2018; 37 (05) 1103-1113
  • 12 Fritz J. Automated and radiation-free generation of synthetic CT from MRI data: does AI help to cross the finish line?. Radiology 2021; 298 (02) 350-352
  • 13 Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction—first experience. Invest Radiol 2016; 51 (06) 400-409
  • 14 Sneag DB, Shah P, Koff MF, Lim WY, Rodeo SA, Potter HG. Quantitative ultrashort echo time magnetic resonance imaging evaluation of postoperative menisci: a pilot study. HSS J 2015; 11 (02) 123-129
  • 15 Bae WC, Du J, Bydder GM, Chung CB. Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging 2010; 21 (05) 275-289
  • 16 Chang EY, Du J, Statum S, Pauli C, Chung CB. Quantitative bi-component T2* analysis of histologically normal Achilles tendons. Muscles Ligaments Tendons J 2015; 5 (02) 58-62
  • 17 Weiger M, Pruessmann KP, Bracher A-K. et al. High-resolution ZTE imaging of human teeth. NMR Biomed 2012; 25 (10) 1144-1151
  • 18 Gyftopoulos S, Beltran LS, Bookman J, Rokito A. MRI evaluation of bipolar bone loss using the on-track off-track method: a feasibility study. AJR Am J Roentgenol 2015; 205 (04) 848-852
  • 19 Nordeck SM, Koerper CE, Adler A. et al. Simulated radiographic bone and joint modeling from 3D ankle MRI: feasibility and comparison with radiographs and 2D MRI. Skeletal Radiol 2017; 46 (05) 651-664
  • 20 Lerch TD, Degonda C, Schmaranzer F. et al. Patient-specific 3-D magnetic resonance imaging-based dynamic simulation of hip impingement and range of motion can replace 3-D computed tomography-based simulation for patients with femoroacetabular impingement: implications for planning open hip preservation surgery and hip arthroscopy. Am J Sports Med 2019; 47 (12) 2966-2977
  • 21 Damopoulos D, Lerch TD, Schmaranzer F. et al. Segmentation of the proximal femur in radial MR scans using a random forest classifier and deformable model registration. Int J CARS 2019; 14 (03) 545-561
  • 22 Wu D, Sofka M, Birkbeck N, Zhou SK. Segmentation of multiple knee bones from CT for orthopedic knee surgery planning. In: Golland P, Hata N, Barillot C, Hornegger J, Howe R. eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. Lecture Notes in Computer Science New York, NY: Springer International Publishing; 2014: 372-380
  • 23 Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med 2018; 79 (04) 2379-2391
  • 24 Gilles B, Magnenat-Thalmann N. Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med Image Anal 2010; 14 (03) 291-302
  • 25 Graichen H, Bonel H, Stammberger T. et al. A technique for determining the spatial relationship between the rotator cuff and the subacromial space in arm abduction using MRI and 3D image processing. Magn Reson Med 1998; 40 (04) 640-643
  • 26 Milone MT, Bedi A, Poultsides L. et al. Novel CT-based three-dimensional software improves the characterization of cam morphology. Clin Orthop Relat Res 2013; 471 (08) 2484-2491
  • 27 Dudda M, Albers C, Mamisch TC, Werlen S, Beck M. Do normal radiographs exclude asphericity of the femoral head-neck junction?. Clin Orthop Relat Res 2009; 467 (03) 651-659
  • 28 Buller LT, Rosneck J, Monaco FM, Butler R, Smith T, Barsoum WK. Relationship between proximal femoral and acetabular alignment in normal hip joints using 3-dimensional computed tomography. Am J Sports Med 2012; 40 (02) 367-375
  • 29 Dandachli W, Najefi A, Iranpour F, Lenihan J, Hart A, Cobb J. Quantifying the contribution of pincer deformity to femoro-acetabular impingement using 3D computerised tomography. Skeletal Radiol 2012; 41 (10) 1295-1300
  • 30 Heyworth BE, Dolan MM, Nguyen JT, Chen NC, Kelly BT. Preoperative three-dimensional CT predicts intraoperative findings in hip arthroscopy. Clin Orthop Relat Res 2012; 470 (07) 1950-1957
  • 31 Kang RW, Yanke AB, Espinoza Orias AA, Inoue N, Nho SJ, Nho SJ. Emerging ideas: novel 3-D quantification and classification of cam lesions in patients with femoroacetabular impingement. Clin Orthop Relat Res 2013; 471 (02) 358-362
  • 32 Bedi A, Dolan M, Magennis E, Lipman J, Buly R, Kelly BT. Computer-assisted modeling of osseous impingement and resection in femoroacetabular impingement. Arthroscopy 2012; 28 (02) 204-210
  • 33 Khan O, Witt J. Evaluation of the magnitude and location of cam deformity using three dimensional CT analysis. Bone Joint J 2014; 96-B (09) 1167-1171
  • 34 Griffin DR, Dickenson EJ, Wall PDH. et al; FASHIoN Study Group. Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHIoN): a multicentre randomised controlled trial. Lancet 2018; 391 (10136): 2225-2235
  • 35 Büchler L, Neumann M, Schwab JM, Iselin L, Tannast M, Beck M. Arthroscopic versus open cam resection in the treatment of femoroacetabular impingement. Arthroscopy 2013; 29 (04) 653-660
  • 36 Liu L, Ecker T, Schumann S, Siebenrock K, Nolte L, Zheng G. Computer assisted planning and navigation of periacetabular osteotomy with range of motion optimization. In: Golland P, Hata N, Barillot C, Hornegger J, Howe R. eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. Lecture Notes in Computer Science. New York, NY: Springer International Publishing; 2014: 643-650
  • 37 Liu L, Ecker T, Xie L, Schumann S, Siebenrock K, Zheng G. Biomechanical validation of computer assisted planning of periacetabular osteotomy: a preliminary study based on finite element analysis. Med Eng Phys 2015; 37 (12) 1169-1173
  • 38 Amis Jr ES, Butler PF, Applegate KE. et al; American College of Radiology. American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol 2007; 4 (05) 272-284
  • 39 Kutty S, Schneider P, Faris P. et al. Reliability and predictability of the centre-edge angle in the assessment of pincer femoroacetabular impingement. Int Orthop 2012; 36 (03) 505-510
  • 40 Lequesne M, Malghem J, Dion E. The normal hip joint space: variations in width, shape, and architecture on 223 pelvic radiographs. Ann Rheum Dis 2004; 63 (09) 1145-1151
  • 41 Griffin DR, Dickenson EJ, O'Donnell J. et al. The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med 2016; 50 (19) 1169-1176
  • 42 Agricola R, Waarsing JH, Arden NK. et al. Cam impingement of the hip: a risk factor for hip osteoarthritis. Nat Rev Rheumatol 2013; 9 (10) 630-634
  • 43 Agricola R, Reijman M, Bierma-Zeinstra SMA, Verhaar JA, Weinans H, Waarsing JH. Total hip replacement but not clinical osteoarthritis can be predicted by the shape of the hip: a prospective cohort study (CHECK). Osteoarthritis Cartilage 2013; 21 (04) 559-564
  • 44 Ross JR, Larson CM, Adeoye O, Kelly BT, Bedi A, Bedi A. Residual deformity is the most common reason for revision hip arthroscopy: a three-dimensional CT study. Clin Orthop Relat Res 2015; 473 (04) 1388-1395
  • 45 Larson CM, Giveans MR, Samuelson KM, Stone RM, Bedi A. Arthroscopic hip revision surgery for residual femoroacetabular impingement (FAI): surgical outcomes compared with a matched cohort after primary arthroscopic FAI correction. Am J Sports Med 2014; 42 (08) 1785-1790
  • 46 Cvetanovich GL, Harris JD, Erickson BJ, Bach Jr BR, Bush-Joseph CA, Nho SJ. Revision hip arthroscopy: a systematic review of diagnoses, operative findings, and outcomes. Arthroscopy 2015; 31 (07) 1382-1390
  • 47 Zeng G, Schmaranzer F, Degonda C. et al. MRI-based 3D models of the hip joint enables radiation-free computer-assisted planning of periacetabular osteotomy for treatment of hip dysplasia using deep learning for automatic segmentation. Eur J Radiol Open 2020; 8: 100303
  • 48 Standefer KD, Dempsey M, Jo C, Kim HKW. 3D MRI quantification of femoral head deformity in Legg-Calvé-Perthes disease. J Orthop Res 2017; 35 (09) 2051-2058
  • 49 Neubert A, Wilson KJ, Engstrom C. et al. Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging. Eur J Radiol 2017; 93: 178-184
  • 50 Ducouret E, Loriaut P, Boyer P. et al. Tunnel positioning assessment after anterior cruciate ligament reconstruction at 12months: comparison between 3D CT and 3D MRI. A pilot study. Orthop Traumatol Surg Res 2017; 103 (06) 937-942
  • 51 Williams A, Qian Y, Golla S, Chu CR. UTE-T2∗ mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthritis Cartilage 2012; 20 (06) 486-494
  • 52 Yamanaka Y, Kamogawa J, Katagi R. et al. 3-D MRI/CT fusion imaging of the lumbar spine. Skeletal Radiol 2010; 39 (03) 285-288
  • 53 Heo DH, Sharma S, Park CK. Endoscopic treatment of extraforaminal entrapment of L5 nerve root (far out syndrome) by unilateral biportal endoscopic approach: technical report and preliminary clinical results. Neurospine 2019; 16 (01) 130-137
  • 54 Murata S, Minamide A, Iwasaki H. et al. Microendoscopic decompression for lumbosacral foraminal stenosis: a novel surgical strategy based on anatomical considerations using 3D image fusion with MRI/CT. J Neurosurg Spine 2020; August 7 (Epub ahead of print)
  • 55 Ng KCG, Rouhi G, Lamontagne M, Beaulé PE. Finite element analysis examining the effects of cam FAI on hip joint mechanical loading using subject-specific geometries during standing and maximum squat. HSS J 2012; 8 (03) 206-212
  • 56 Ng KCG, Lamontagne M, Labrosse MR, Beaulé PE. Hip joint stresses due to cam-type femoroacetabular impingement: a systematic review of finite element simulations. PLoS One 2016; 11 (01) e0147813