Synthesis 2022; 54(10): 2511-2515
DOI: 10.1055/s-0040-1719889
paper

Synthesis of a Maleimide-Diaminoterephthalate Fluorescence Dye as a ‘Turn-On’ Probe for the Detection of Thiols

Nils Schröder
,
Jens Christoffers
We gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft within the framework of the GRK 1885 ‘Molecular Basis of Sensory Biology’.


Abstract

A fluorescence ‘turn-on’ probe for the detection of thiols was prepared in three steps. A diaminoterephthalate chromophore (λabs = 472 nm) was equipped with a maleimide moiety as reactive group. Upon conjugate addition of the thiol, the fluorescence intensity is increased by a factor of about twenty (λem = 567 nm, quantum yield Φ = 1% → 14%). The probe is used to establish a quantitative assay for glutathione.

Supporting Information



Publication History

Received: 13 October 2021

Accepted after revision: 17 December 2021

Article published online:
09 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Reviews:
    • 1a Mayer A, Neuenhofer S. Angew. Chem., Int. Ed. Engl. 1994; 33: 1044 ; Angew. Chem. 1994, 106, 1097
    • 1b Chen X, Zhou Y, Peng X, Yoon J. Chem. Soc. Rev. 2010; 39: 2120
    • 1c Nagano T. Proc. Jpn. Acad., Ser. B 2010; 86: 837
    • 1d Schäferling M. Angew. Chem. Int. Ed. 2012; 51: 3532 ; Angew. Chem. 2012, 124, 3590
    • 2a Laserna V, Istrate A, Kafuta K, Hakala TA, Knowles TP. J, Alcarazo M, Bernardes GJ. L. Bioconjugate Chem. 2021; 32: 1570
    • 2b Guo Y, Yao L, Luo L, Wang H.-X, Yang Z, Wang Z, Ai S.-L, Zhang Y, Zou Q.-C, Zhang H.-L. Org. Chem. Front. 2021; 8: 239
    • 2c Husband JT, Xie Y, Wilks TR, Male L, Torrent-Sucarrat M, Stavros VG, O’Reilly RK. Chem. Sci. 2021; 12: 10550
    • 2d Burgess L, Wilson H, Jones AR, Harvey P, Natrajan LS, Hay S. Chem. Eur. J. 2020; 26: 14817
    • 2e Varandas PA. M. M, Cobb AJ. A, Segundo MA, Silva EM. P. Bioconjugate Chem. 2020; 31: 417
    • 2f Segelken J, Wallisch M, Schultz K, Christoffers J, Janssen-Bienhold U. ACS Chem. Neurosci. 2018; 9: 858
    • 2g Wallisch M, Sulmann S, Koch K.-W, Christoffers J. Chem. Eur. J. 2017; 23: 6535

      Reviews:
    • 3a Liu Z, Liu J, Wang X, Mi F, Wang D, Wu C. Bioconjugate Chem. 2020; 31: 1857
    • 3b Liu G, Hu J, Liu S. Chem. Eur. J. 2018; 24: 16484
    • 3c Reguera L, Mendez Y, Humpierre AR, Valdes O, Rivera DG. Acc. Chem. Res. 2018; 51: 1475
    • 3d Hermanson GT. Aldrichimica Acta 2017; 50: 43
    • 4a McConnell EW, Smythers AL, Hicks LM. J. Am. Soc. Mass Spectrom. 2020; 31: 1697
    • 4b Renault K, Fredy JW, Renard P.-Y, Sabot C. Bioconjugate Chem. 2018; 29: 2497
    • 4c Wu D, Cheung S, Devocelle M, Zhang L.-J, Chen Z.-L, O’Shea DF. Chem. Commun. 2015; 51: 16667
    • 4d Haimi P, Sikorskaite-Gudziuniene S, Baniulis D. Proteomics 2015; 15: 1777
    • 4e Dietz L, Bosque A, Pankert P, Ohnesorge S, Merz P, Anel A, Schnölzer M, Thierse H.-J. Proteomics 2009; 9: 4298
    • 4f Weh J, Duerkop A, Wolfbeis OS. ChemBioChem 2007; 8: 122
    • 5a Lee U, Kim T.-I, Jeon S, Luo Y, Cho S, Bae J, Kim Y. Chem. Eur. J. 2021; 27: 12545
    • 5b Tian Y, Yang H, Li X, Wang Y, Teng Y, Yin D. Org. Lett. 2021; 23: 3782
    • 5c Shim J, Tawfik SM, Thangadurai DT, Lee Y.-I. Bull. Korean Chem. Soc. 2021; 42: 1047
    • 5d Sierra AF, Aragay G, Penuelas-Haro G, Ballester P. Org. Chem. Front. 2021; 8: 2402
    • 5e Maiti M, Yoon SA, Cha Y, Athul KK, Bhuniya S, Lee MH. Chem. Commun. 2021; 57: 9614
    • 5f Xiao P, Liu J, Wang Z, Tao F, Yang L, Yuan G, Sun W, Zhang X. Chem. Commun. 2021; 57: 5012
    • 5g Arunjegan A, Rajaji P, Sivanesan S, Panneerselvam P. RSC Adv. 2021; 11: 12361
    • 6a Liebermann H. Justus Liebigs Ann. Chem. 1914; 404: 272
    • 6b Review: Christoffers J. Eur. J. Org. Chem. 2018; 2366
    • 7a Shimizu M, Asai Y, Takeda Y, Yamatani A, Hiyama T. Tetrahedron Lett. 2011; 52: 4084
    • 7b Shimizu M, Fukui H, Natakani M, Sakaguchi H. Eur. J. Org. Chem. 2016; 5950
    • 7c Tang B, Wang C, Wang Y, Zhang H. Angew. Chem. Int. Ed. 2017; 56: 12543 ; Angew. Chem. 2017, 129, 12717
    • 7d Fan Z, Wang J, Hao N, Li Y, Yin Y, Wang Z, Ding Y, Zhao J, Zhang K, Huang W. Chem. Commun. 2019; 55: 11892
    • 7e Fan Z, Lin Z, Wang Z, Wang J, Xie M, Zhao J, Zhang K, Huang W. ACS Appl. Mater. Interfaces 2020; 12: 11409
    • 7f Kim J, An JM, Jung Y, Kim NH, Kim Y, Kim D. Nanomaterials 2021; 11: 2036
    • 7g Review: Kim J, Oh JH, Kim D. Org. Biomol. Chem. 2021; 19: 933
  • 8 Sinnreich J. Synthesis 1980; 578
    • 9a Pflantz R, Christoffers J. Chem. Eur. J. 2009; 15: 2200
    • 9b Buschbeck L, Christoffers J. J. Org. Chem. 2018; 83: 4002
  • 10 Wache N, Schröder C, Koch K.-W, Christoffers J. ChemBioChem 2012; 13: 993
  • 11 Schröder N, Schmidtmann M, Christoffers J. Eur. J. Org. Chem. 2021; 4260
  • 12 Kitajima M, Murakami Y, Takahashi N, Wu Y, Kogure N, Zhang R.-P, Takayama H. Org. Lett. 2014; 16: 5000
    • 13a Magano J, Conway BG, Farrand D, Lovdahl M, Maloney MT, Pozzo MJ, Teixeira JT, Rizzo J, Tumelty D. Synthesis 2014; 46: 1399
    • 13b Song HY, Ngai MH, Song ZY, MacAry PA, Hobley J, Lear MJ. Org. Biomol. Chem. 2009; 7: 3400
  • 14 Folkers G, Hüser J, Mannhold R, Kubinyi H. High-Throughput Screening in Drug Discovery (Methods and Principles in Medicinal Chemistry). Wiley-VCH; Weinheim: 2006
  • 15 Fu Q, Liu R, Cui X, Zhao Y, Chi H, Lu Y, Fei Q, Feng G, Shan H, Huan Y. Anal. Sci. 2021; 37: 1541
    • 16a Parker CA, Rees WT. Analyst 1960; 85: 587
    • 16b Demas JN, Crosby GA. J. Phys. Chem. 1971; 75: 991
    • 16c Fery-Forgues S, Lavabre D. J. Chem. Educ. 1999; 76: 1260
    • 17a Snare MJ, Treloar FE, Ghiggino KP, Thistlethwaite PJ. J. Photochem. 1982; 18: 335
    • 17b Casey KG, Quitevis EL. J. Phys. Chem. 1988; 92: 6590