Synthesis 2022; 54(10): 2433-2446
DOI: 10.1055/s-0040-1719883
paper

Rh2(esp)2-Catalyzed Redox/Cycloaddition Cascade of Diazoaceto­acetate Enones with N-Methyl Nitrones: Diastereoselective Synthesis of β-Lactams with Two Adjacent Chiral Centers

Yingjun Zhao
,
Rujie Xu
,
Zhengqing Xu
,
Xichen Xu
This work was supported by the National Natural Science Foundation of China (21801198), the Wuhan Institute of Technology (17QD05), and the Graduate Innovative Fund of the Wuhan Institute of Technology (CX2020280).


Abstract

A Rh2(esp)2-catalyzed diastereoselective synthesis of highly functionalized β-lactams is developed. By employing Rh2(esp)2 as the catalyst, a reaction cascade operates by reducing an N-methyl nitrone to the corresponding N-methyl imine in the presence of a first molecule of the diazoacetoacetate enone. A second molecule of the diazoacetoacetate enone sensing a change in the reaction medium undergoes a Wolff rearrangement to afford a vinyl ketene. This vinyl ketene then reacts with the in situ generated N-methyl imine to diastereoselectively furnish a β-lactam with two contiguous stereogenic centers. Extension of this method to the [2+2]-cycloaddition of PMB-protected imines and diazoacetoacetate enones catalyzed by Rh2(esp)2 is also reported.

Supporting Information



Publikationsverlauf

Eingereicht: 22. November 2021

Angenommen nach Revision: 16. Dezember 2021

Artikel online veröffentlicht:
01. Februar 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Liu B, Hamrick J, Daigle DM, Condon SM. Med. Chem. Rev. 2019; 54: 253
    • 1b Shalaby MW, Dokla EM. E, Serya RA. T, Abouzid KA. M. Eur. J. Med. Chem. 2020; 199: 112312
    • 2a Burke TP. Cell 2018; 172: 891
    • 2b Dik DA, Fisher JF, Mobashery S. Chem. Rev. 2018; 118: 5952
    • 2c Heffernan AJ, Sime FB, Lipman J, Roberts JA. Drugs 2018; 78: 621
    • 2d Shirley M. Drugs 2018; 78: 675
    • 2e Jean SS, Gould IM, Lee WS, Hsueh PR. Drugs 2019; 79: 705
    • 2f Sonawane AD, Sonawane RA, Ninomiya M, Koketsu M. Adv. Synth. Catal. 2020; 362: 3485
    • 2g Alves NG, Alves AJ. S, Soares MI. L, Pinho e Melo TM. V. D. Adv. Synth. Catal. 2021; 363: 2464
    • 2h Ding Y, Li Z, Xu C, Qin W, Wu Q, Wang X, Cheng X, Li L, Huang W. Angew. Chem. Int. Ed. 2021; 60: 24
    • 2i Fisher JF, Mobashery S. Chem. Rev. 2021; 121: 3412
    • 2j Bao M, Chen JZ, Pei C, Zhang SJ, Lei JP, Hu WH, Xu XF. Sci. China Chem. 2021; 64: 778
    • 2k Synofzik J, Bakulina O, Balabas O, Darin D, Krasavin M. Synthesis 2020; 52: 3029
    • 2l Zhang QL, Xiong Q, Li MM, Xiong W, Shi B, Lan Y, Lu LQ, Xiao WJ. Angew. Chem. Int. Ed. 2020; 59: 14096
    • 2m Zheng Y, Zhang J, Cheng X, Xu X, Zhang L. Angew. Chem. Int. Ed. 2019; 58: 5241
    • 3a Gajdacs M. Antibiotics 2019; 8: 52
    • 3b Lima LM, Silva B, Barbosa G, Barreiro EJ. Eur. J. Med. Chem. 2020; 208: 112829
    • 4a Palomo C, Aizpurua JM, Ganboa I, Oiarbide M. Curr. Med. Chem. 2004; 11: 1837
    • 4b Venturini A, Gonzalez J. Mini-Rev. Org. Chem. 2006; 3: 185
    • 4c Cossio FP, Arrieta A, Sierra MA. Acc. Chem. Res. 2008; 41: 925
    • 4d Fu N, Tidwell TT. Tetrahedron 2008; 64: 10465
    • 4e Tidwell TT. Top. Heterocycl. Chem. 2013; 30: 111
  • 5 Tidwell TT. β-Lactams from Ketene-Imine Cycloadditions: An Update. In β-Lactams: Novel Synthetic Pathways and Applications. Banik BK. Springer; Cham: 2017: 105-128
    • 6a Alcaide B, Almendros P, Aragoncillo C. Chem. Rev. 2007; 107: 4437
    • 6b Brandi A, Cicchi S, Cordero FM. Chem. Rev. 2008; 108: 3988
    • 7a Wisniewska HM, Jarvo ER. J. Org. Chem. 2013; 78: 11629
    • 7b Vesely J, Rios R. Chem. Soc. Rev. 2014; 43: 611
    • 7c Ochiai T, Franz D, Inoue S. Chem. Soc. Rev. 2016; 45: 6327
    • 7d Reid JP, Simon L, Goodman JM. Acc. Chem. Res. 2016; 49: 1029
    • 7e Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
    • 7f Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
    • 7g Kandappa SK, Valloli LK, Ahuja S, Parthiban J, Sivaguru J. Chem. Soc. Rev. 2021; 50: 1617
    • 7h Latrache M, Hoffmann N. Chem. Soc. Rev. 2021; 50: 7418
    • 9a Chen L, Wang K, Shao Y, Sun J. Org. Lett. 2019; 21: 3804
    • 9b Chen L, Zhang L, Shao Y, Xu G, Zhang X, Tang S, Sun J. Org. Lett. 2019; 21: 4124
    • 9c Mandler MD, Truong PM, Zavalij PY, Doyle MP. Org. Lett. 2014; 16: 740
    • 10a Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 10b Deng Y, Qiu H, Srinivas HD, Doyle MP. Curr. Org. Chem. 2015; 20: 61
    • 10c Lewis JC. Acc. Chem. Res. 2019; 52: 576
    • 10d Liang AD, Serrano-Plana J, Peterson RL, Ward TR. Acc. Chem. Res. 2019; 52: 585
    • 10e Che C.-M, Wang H.-X, Wu K. Synlett 2020; 32: 249
  • 11 Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 13a Platz MS. J. Org. Chem. 2014; 79: 2341
    • 13b Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 14a Jiang Y, Khong VZ, Lourdusamy E, Park CM. Chem. Commun. 2012; 48: 3133
    • 14b Shanahan CS, Truong P, Mason SM, Leszczynski JS, Doyle MP. Org. Lett. 2013; 15: 3642
    • 14c Truong PM, Mandler MD, Shanahan CS, Doyle MP. Heterocycles 2014; 88: 1039
    • 14d Truong PM, Zavalij PY, Doyle MP. Angew. Chem. Int. Ed. 2014; 53: 6468
    • 14e Brauns M, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 8902
    • 14f Chen Y, Wu D, Zhou J, Wang Y, Huang J, Xu X. Synthesis 2019; 51: 4165
    • 15a DeAngelis A, Panish R, Fox JM. Acc. Chem. Res. 2016; 49: 115
    • 15b Yang X, Yang Y, Xue Y. ACS Catal. 2016; 6: 162
    • 15c Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 16a Braun CM, Congdon EA, Nolin KA. J. Org. Chem. 2015; 80: 1979
    • 16b Daru A, Roca-Lopez D, Tejero T, Merino P. J. Org. Chem. 2016; 81: 673
    • 16c Ma X.-P, Zhu J.-F, Wu S.-Y, Chen C.-H, Zou N, Liang C, Su G.-F, Mo D.-L. J. Org. Chem. 2017; 82: 502
    • 16d Angyal A, Demjen A, Wolfling J, Puskas LG, Kanizsai I. J. Org. Chem. 2020; 85: 3587
    • 16e Cordier M, Archambeau A. Org. Lett. 2018; 20: 2265
    • 17a Yu Y, Sha Q, Cui H, Chandler KS, Doyle MP. Org. Lett. 2018; 20: 776
    • 17b Truong P, Xu X, Doyle MP. Tetrahedron Lett. 2011; 52: 2093