Subscribe to RSS
DOI: 10.1055/s-0040-1719877
Palladium-Catalyzed Site-Selective Arylation of α,β-Unsaturated Carbonyl Compounds through a Ligand-Controlled Strategy
We thank the Research Grants Council of the Hong Kong Special Administrative Region, China (PolyU 25301819 and 15300220), the National Natural Science Foundation of China (21972122), and Shenzhen Municipal Science and Technology Innovation Commission (JCYJ20180306173843318) for financial support.
Abstract
Palladium-catalyzed direct arylation of α,β-unsaturated carbonyl compounds is an efficient and attractive strategy to access arylated α,β-unsaturated carbonyl compounds through the construction of carbon–carbon bonds. This reaction has several challenges, especially in terms of the control of regioselectivity between α- and γ-arylation and the selectivity for monoarylation and multiple arylation. Herein, we discuss the recent development of γ-arylation of α,β-unsaturated carbonyl compounds and present the ligand-controlled, site-selective α- and γ-arylation of α,β-unsaturated carbonyl ketones with (hetero)aryl halides. The site selectivity of the reaction is switchable by simply changing the phosphine ligand.
1 Introduction
2 Reaction Development and Mechanistic Investigation
3 Conclusion and Outlook
Key words
palladium catalysis - phosphine ligand - regioselectivity - arylation - α,β-unsaturated ketonesPublication History
Received: 05 December 2021
Accepted after revision: 23 December 2021
Article published online:
01 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Catalyzed Carbon–Heteroatom Bond Formation. Yudin AK. Wiley-VCH; Weinheim: 2010
- 1b Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments. Molnár Á. Wiley-VCH; Weinheim: 2013
- 1c Metal-Catalyzed Cross-Coupling Reactions and More, Vols. 1–3. de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014
- 1d New Trends in Cross-Coupling: Theory and Applications. Calacot TJ. RSC; Cambridge: 2015
- 1e Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 1f Campeau L.-C, Hazari N. Organometallics 2019; 38: 3
- 2a Thomas KR. J, Lin JT, Tao Y.-T, Ko C.-W. Adv. Mater. 2000; 12: 1949
- 2b Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
- 2c Applications of transition metal catalysis in drug discovery and development: An industrial perspective; Crawley ML, Trost BM. John Wiley & Sons: Hoboken, 2012 .
- 2d Wang D, Gao S. Org. Chem. Front. 2014; 1: 556
- 2e Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 2f Devendar P, Qu R.-Y, Kang W.-M, He B, Yang G.-F. J. Agric. Food Chem. 2018; 66: 8914
- 2g Leone AK, Mueller EA, McNeil AJ. J. Am. Chem. Soc. 2018; 140: 15126
- 2h Forero-Cortés PA, Haydl AM. Org. Process Res. Dev. 2019; 23: 1478
- 3a Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 3b Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 3c Zhang F, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
- 4a Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org. Chem. Front. 2014; 1: 843
- 4b Bag S, Patra T, Modak A, Deb A, Maity S, Dutta U, Dey A, Kancherla R, Maji A, Hazra A, Bera M, Maiti D. J. Am. Chem. Soc. 2015; 137: 11888
- 5a Rossi R, Bellina F, Lessi M, Manzini C. Adv. Synth. Catal. 2014; 356: 17
- 5b Cardoza S, Shrivash MK, Das P, Tando V. J. Org. Chem. 2021; 86: 1330
- 6 For a review, see: Wang X.-C, Gong W, Fang L.-Z, Zhu R.-Y, Li S, Engle KM, Yu J.-Q. Nature 2015; 519: 334
- 7a Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
- 7b Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
- 7c Lloyd-Jones GC. Angew. Chem. Int. Ed. 2002; 41: 953
- 7d Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
- 7e Sivanandan ST, Shaji A, Ibnusaud I, Seechurn CC. C. J, Colacot TJ. Eur. J. Org. Chem. 2015; 38
- 8 Franzoni I, Mazet C. Org. Biomol. Chem. 2014; 12: 233
- 9a Amlinger S. ChemMedChem 2010; 5: 351
- 9b Shi Z, Grohmann C, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5393
- 9c Choi JW, Jang BK, Cho NC, Park JH, Yeon SK, Ju EJ, Lee YS, Han G, Pae AN, Kim DJ, Park KD. Bioorg. Med. Chem. 2015; 23: 6486
- 9d Bianco A, Cavarischia C, Guiso M. Eur. J. Org. Chem. 2004; 2894
- 9e Reddy LV, Kumar V, Sagar R, Shaw AK. Chem. Rev. 2013; 113: 3605
- 9f Hu L, Lu X, Deng L. J. Am. Chem. Soc. 2015; 137: 8400
- 10 Terao Y, Satoh T, Miura M, Nomura M. Tetrahedron Lett. 1998; 39: 6203
- 11 Hyde AM, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 177
- 12 Hyde AM, Buchwald SL. Org. Lett. 2009; 11: 2663
- 13 Huang DS, Hartwig JF. Angew. Chem. Int. Ed. 2010; 49: 5757
- 14 Franzoni I, Guénée L, Mazet C. Chem. Sci. 2013; 4: 2619
- 15 Franzoni I, Poblador-Bahamonde AI. Organometallics 2016; 35: 2955
- 16 Saini G, Mondal A, Kapur M. Org. Lett. 2019; 21: 9071
- 17 Sexton ME, Okazaki A, Yu Z, van Venrooy A, Schmink JR, Malachowski WP. Tetrahedron Lett. 2019; 60: 151057
- 18 Yang Y.-C, Lin Y.-C, Wu Y.-K. Org. Lett. 2019; 21: 9286
- 19 Yuen OY, So CM. Angew. Chem. Int. Ed. 2020; 59: 23438
- 20a Fu WC, So CM, Chow WK, Yuen OY, Kwong FY. Org. Lett. 2015; 17: 4612
- 20b Fu WC, So CM, Yuen OY, Lee IT. C, Kwong FY. Org. Lett. 2016; 18: 1872
- 20c Chen X, Chen Z, So CM. J. Org. Chem. 2019; 84: 6337
- 21a Hartwig JF. Inorg. Chem. 2007; 46: 1936
- 21b Zhang H, Luo X, Wongkhan K, Duan H, Li Q, Zhou L, Wang J, Batsanov AS, Howard JA. K, Marder TB, Lei A. Chem. Eur. J. 2009; 15: 3823
- 21c Hesp KD, Lundgren RJ, Straddiotto M. J. Am. Chem. Soc. 2011; 133: 5194
- 22 For a review, see: Xue L, Lin Z. Chem. Soc. Rev. 2010; 39: 1692
For reviews, see:
For recent reviews, see:
For a review of electronic effects on reductive elimination, see: