Synlett 2022; 33(07): 617-636
DOI: 10.1055/s-0040-1719852
account

Recent Advances in the Synthesis of Diverse Libraries of Small-Molecule Building Blocks in Ionic Liquids (ILs)

a   Department of Chemistry, University of North Florida, 1, UNF Drive, Jacksonville, Florida 32224, USA
,
Rajesh G. Kalkhambkar
b   Department of Chemistry, Karnatak University’s Karnatak Science College, Dharwad, Karnatak 580001, India
,
Suraj M. Sutar
b   Department of Chemistry, Karnatak University’s Karnatak Science College, Dharwad, Karnatak 580001, India
› Author Affiliations
K.K.L. thanks University of North Florida (UNF) for the Outstanding Faculty Scholarship and Presidential Professorship awards, UNF Foundation Board grant, and the Dean’s Leadership Council award. R.G.K. thanks the Department of Science and Technology, Science and Engineering Research Board (DST-SERB, Grant Number SB/FT/CS-175/2013), the University Grants Commission, South-Western Regional Office (UGC-SWRO, Grant Number 2069- MRP/15-16/KAKA056/UGC-SWRO), and the Vision Group on Science and Technology (VGST, Grant Number VGST-RGS/F/GRD-742/2017-18/2018-19) for providing financial assistance to complete various projects successfully. S.M.S. thanks Karnatak University and Karnatak Science College, Dharwad for university research studentship.


Abstract

The Account describes recent advances, from the authors’ laboratories, in the synthesis of diverse libraries of small-molecule building blocks employing ionic liquids (ILs). The ability of ILs to act as catalysts/promoters/solvents for electrophilic and onium ion chemistry, as well as in metal-mediated cross-coupling reactions, and the potential to sequence/hyphenate these methods, have opened up new opportunities for facile assembly of functional small molecules with increased complexity from readily available precursors. While Brønsted acidic IL/IL solvent mixtures are suitable media for carbocation and onium ion chemistry, piperidine-appended IL/IL solvent mixtures can successfully catalyze a variety of base-catalyzed reactions. Several widely practiced transformations including ‘name reactions’ were adapted and performed efficiently in ILs.

1 Introduction

2 Aryldiazonium Salts and Aryltriazenes as Coupling Partners in Metal-Mediated C–C Cross-Coupling Reactions in ILs

3 Expanding the Scope of Metal-Mediated Cross-Coupling Reactions in ILs

4 Application of ILs in Synthesis and Functionalization of Hetero­cycles

5 Expanding the Scope of Amide Synthesis in ILs

6 Generation and Chemistry of ‘Tamed’ Propargylic Cations in ILs

7 Newer Nitration Methods for Arenes and Heteroarenes in ILs

8 Halofunctionalization in ILs

9 ‘Name Reactions’and Other Widely Practiced Synthetic Transformations in ILs

9.1 The Biginelli Reaction

9.2 Nitrile Synthesis by the Schmidt Reaction

9.3 Rupe Rearrangement

9.4 Synthesis of 1,3-Dioxanes via Prins Reaction in [BMIM(SO3H)][OTf]

9.5 Synthesis of Cyclopropanes and Oxiranes by the Corey–Chaykovsky (CC) Reaction

10 Conclusions and Closing Remarks



Publication History

Received: 17 August 2021

Accepted after revision: 06 October 2021

Article published online:
18 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
  • 2 Olivier-Bourbigou H, Magna L, Morvan D. Appl. Catal., A 2010; 373: 1
  • 3 Chiappe C, Rajamani S. Eur. J. Org. Chem. 2011; 5517
  • 4 Sawant AD, Raut DG, Darvatkar NB, Salunkhe MM. Green Chem. Lett. Rev. 2011; 4: 41
  • 5 Miao W, Chan TH. Acc. Chem. Res. 2006; 39: 897
  • 6 Katharina B, Gaertner P. Eur. J. Org. Chem. 2008; 3235

    • See, for example:
    • 7a Shen Z.-L, Cheong H.-L, Lai Y.-C, Loo W.-Y, Loh T.-P. Green Chem. 2012; 14: 2626
    • 7b Shen Z.-L, Goh KK. K, Wong CH. A, Loo W.-Y, Yang Y.-S, Lu J, Loh T.-P. Chem. Commun. 2012; 48: 5856
    • 7c Liu C.-Y, Hu X.-B, Wu Y.-T. XiandaiHuagong 2013; 33: 41 
    • 8a Li J, Yang S, Wu W, Jiang H. Eur. J. Org. Chem. 2018; 11: 1284
    • 8b Prechtl MH. G, Scholten JD, Dupont J. Molecules 2010; 15: 3441
    • 9a Abonia R, Laali KK. In Advances in Heterocyclic Chemistry, Vol. 128. Scriven EF. V, Ramsden CA. Elsevier; Amsterdam: 2019: 333-431
    • 9b Pavlinac J, Zupan M, Laali KK, Stavber S. Tetrahedron 2000; 65: 5625
  • 10 Laali KK. ARKIVOC 2016; (i): 150
  • 11 Aridoss G, Laali KK. In Green Chemistry: An Inclusive Approach . Török B, Dransfield T. Elsevier; Amsterdam: 2017: 555
  • 12 Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2011; 52: 1733
  • 13 Savanur HM, Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2016; 57: 663
  • 14 Sutar SM, Savanur HM, Malunavar SS, Prabhala P, Kalkhambkar RG, Laali KK. Eur. J. Org. Chem. 2019; 6088
  • 15 Prabhala P, Savanur HM, Kalkhambkar RG, Laali KK. Eur. J. Org. Chem. 2019; 10: 2061
  • 16 Sutar SM, Savanur HM, Patil C, Prabhala P, Aridoss G, Kalkhambkar RG. ChemistrySelect 2020; 5: 12324
  • 17 Sutar SM, Kalkhambkar RG. ChemistrySelect 2021; 6: 6548
  • 18 Sutar SM, Prabhala P, Savanur HM, Kalkhambkar RG, Aridoss G, Laali KK. ChemistrySelect 2021; 6: 4741
  • 19 Reddy AS, Laali KK. Tetrahedron Lett. 2015; 56: 4807
  • 20 Malunavar SS, Sutar SM, Prabhala P, Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2020; 61: 151987
  • 21 Savanur HM, Kalkhambkar RG, Laali KK. Eur. J. Chem. 2018; 38: 5285
  • 22 Savanur HM, Kalkhambkar RG, Laali KK. Appl. Catal., A 2017; 543: 150
  • 23 Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2011; 52: 5525
  • 24 Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2012; 53: 4212
  • 25 Malunavar SS, Sutar SM, Savanur HM, Prabhala P, Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2020; 61: 151509
  • 26 Haldorai Y, Kalkhambkar RG, Shim J.-J. Asian J. Chem. 2013; 25: 9379
  • 27 Prabhala P, Savanur HM, Sutar SM, Malunavar SS, Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2020; 61: 151854
    • 28a Gutierrez LF, Agemura Y, Laali KK. Tetrahedron Lett. 2020; 61: 152179
    • 28b Laali KK, Okazaki T, Bunge SD. J. Org. Chem. 2007; 72: 6758
  • 29 Aridoss G, Laali KK. Eur. J. Org. Chem. 2011; 2827
  • 30 Kalkhambkar RG, Waters SN, Laali KK. Tetrahedron Lett. 2011; 52: 867
  • 31 Sutar SM, Savanur HM, Kalkhambkar RG, Borosky GL, Aridoss G, Laali KK. Tetrahedron Lett. 2020; 61: 152553
  • 32 Savanur HM, Malunavar SS, Prabhala P, Sutar SM, Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2019; 60: 151159
  • 33 Aridoss G, Sarca VD, Ponder JF, Crowe J, Laali KK. Org. Biomol. Chem. 2011; 9: 2518
  • 34 Aridoss G, Laali KK. Tetrahedron Lett. 2011; 52: 6859
  • 35 Narayana Kumar GG. K. S, Aridoss G, Laali KK. Tetrahedron Lett. 2012; 53: 3066
  • 36 Narayana Kumar GG. K. S, Laali KK. Tetrahedron Lett. 2013; 54: 965
  • 37 Narayana Kumar GG. K. S, Laali KK. Org. Biomol. Chem. 2012; 10: 7347
  • 38 Aridoss G, Laali KK. J. Org. Chem. 2011; 76: 8088
  • 39 Jacoway J, Narayana Kumar GG. K. S, Laali KK. Tetrahedron Lett. 2012; 53: 6782
  • 40 Reddy AS, Laali KK. Tetrahedron Lett. 2015; 56: 5495
  • 41 Prebil R, Laali KK, Stavber S. Org. Lett. 2013; 15: 2108
  • 42 Savanur HM, Kalkhambkar RG, Aridoss G, Laali KK. Tetrahedron Lett. 2016; 57: 3029
  • 43 Nandi GC, Laali KK. Tetrahedron Lett. 2013; 54: 2177
  • 44 Nandi GC, Rathman BM, Laali KK. Tetrahedron Lett. 2013; 54: 6258
  • 45 Kalkhambkar RG, Jeong YT. Synth. Commun. 2014; 44: 762
  • 46 Malunavar SS, Sutar SM, Prabhala P, Savanur HM, Kalkhambkar RG, Aridoss G, Laali KK. Tetrahedron Lett. 2021; 81: 153339