Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(03): 538-546
DOI: 10.1055/s-0040-1707387
DOI: 10.1055/s-0040-1707387
paper
Efficient Access to Isoquinolines via Rhodium-Catalyzed Oxidative Annulation of Pyridyl C–H Bonds Directed by Carbonyl with Internal Alkynes
This work was funded by the National Key Research and Development Program of China (2018YFB1501600), the National Natural Science Foundation of China (21773271 and 21972151), the Light of West China of the Chinese Academy of Sciences (CAS), and the Key Research Program of Frontier Sciences, CAS (QYZDJSSW-SLH051).
Abstract
An efficient synthesis of amino-substituted isoquinolines via Rh(III)-catalyzed oxidative [2+2+2] annulation of pyridines with alkynes has been developed, which is cooperatively enabled by a directing carbonyl and steric hindrance adjacent to the amino group of the pyridine, via a six-membered rhodacyclic intermediate without coordination with the pyridinic nitrogen. The establishment of this C–H activation strategy also paves the way for other oxidative transformations of heterocyclic C–H bonds.
Key words
rhodium - oxidative [2+2+2] annulation - C–H activation - isoquinolines - cooperative catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707387.
- Supporting Information
Publication History
Received: 20 July 2020
Accepted after revision: 18 August 2020
Article published online:
15 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Bentley KW. The Isoquinoline Alkaloids, Vol. 1. Hardwood Academic; Amsterdam: 1998
- 1b Ji Ram V, Sethi A, Nath M, Pratap R. Six-Membered Heterocycles . In The Chemistry of Heterocycles . Elsevier; Amsterdam: 2019: 3-391
- 2a Organic Reactions, Vol. 6. Adams R. Wiley; New York: 1951: 74-206
- 2b Wolfe JP. Bischler–Napieralski Reaction. In Name Reactions in Heterocyclic Chemistry. Li JJ. Wiley; Hoboken, NJ: 2005: 376
- 3a Li JJ, Gribble GW. Palladium in Heterocyclic Chemistry . Pergamon; New York: 2000
- 3b Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
- 3c Fischer D, Tomeba H, Pahadi NK, Patil NT, Huo Z, Yamamoto Y. J. Am. Chem. Soc. 2008; 130: 15720
- 3d Guimond N, Fagnou K. J. Am. Chem. Soc. 2009; 131: 2050
- 3e Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
- 3f Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
- 3g He L, Li H, Neumann H, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 1420
- 3h Eftekhari-Sis B, Zirak M. Chem. Rev. 2015; 115: 151
- 3i Piou T, Rovis T. Acc. Chem. Res. 2018; 51: 170
- 3j Cheng J, Xie J, Zhu C. Chem. Commun. 2018; 54: 1655
- 3k Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 3l Wang Z.-S, Chen Y.-B, Zhang H.-W, Sun Z, Zhu C, Ye L.-W. J. Am. Chem. Soc. 2020; 142: 3636
- 4 Umeda N, Tsurugi H, Satoh T, Miura M. Angew. Chem. Int. Ed. 2008; 47: 4019
- 5a Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2019; 58: 6732
- 5b Kong W.-J, Finger LH, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 6342
- 5c Bettadapur KR, Kapanaiah R, Lanke V, Prabhu KR. J. Org. Chem. 2018; 83: 1810
- 5d Biswas A, Giri D, Das D, De A, Patra SK, Samanta R. J. Org. Chem. 2017; 82: 10989
- 5e Wang L, Yu Y, Yang M, Kuai C, Cai D, Yu J, Cui X. Adv. Synth. Catal. 2017; 359: 3818
- 5f Li S, Wang C, Lin H, Zhang X, Dong L. Org. Lett. 2015; 17: 3018
- 6 Qian Z.-C, Zhou J, Li B, Shi B.-F. Synlett 2014; 25: 1036
- 7 Martínez ÁM, Echavarren J, Alonso I, Rodríguez N, Arrayás RG, Carretero JC. Chem. Sci. 2015; 6: 5802
- 8 Xu X, Zhao H, Xu J, Chen C, Pan Y, Luo Z, Zhang Z, Li H, Xu L. Org. Lett. 2018; 20: 3843
- 9 Wu S, Wang Z, Bao Y, Chen C, Liu K, Zhu B. Chem. Commun. 2020; 56: 4408
- 10a Chrzanowska M, Grajewska A, Rozwadowska MD. Chem. Rev. 2016; 116: 12369
- 10b Froidevaux V, Negrell C, Caillol S, Pascault J.-P, Boutevin B. Chem. Rev. 2016; 116: 14181
- 10c Mancuso R, Della Ca’ N, Veltri L, Ziccarelli I, Gabriele B. Catalysts 2019; 9: 610
- 10d Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Chem. Rev. 2019; 119: 1221
- 10e Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090
- 11a Li P, Zhao J, Xia C, Li F. Org. Lett. 2014; 16: 5992
- 11b Zhao J, Li P, Xia C, Li F. RSC Adv. 2015; 5: 32835
- 11c Shi L, Zhong X, She H, Lei Z, Li F. Chem. Commun. 2015; 51: 7136
- 11d Li P, Zhao J, Shi L, Wang J, Shi X, Li F. Nat. Commun. 2018; 9: 1972
- 12 Li W, Yin H, Wen L, Cui J, Wang D. Acta Crystallogr., Sect. E 2009; 65: 112
- 13 CCDC 2017327 (3f) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 14a Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
- 14b Shin S, Kang D, Jeon WH, Lee PH. Beilstein J. Org. Chem. 2014; 10: 1220
- 14c Gao B, Liu S, Lan Y, Huang H. Organometallics 2016; 35: 1480
- 15 The structures of compounds 5 and 6 were confirmed on the basis of their NMR data: the CH3 and CF3 signals at the para-position of the phenyl at the 8-position of isoquinolines 5 and 6 appear at d 1.934 and –62.97 ppm, respectively. These obvious upfield shifts are caused by the substantial shielding effect of the phenyl ring in the directing group.