Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(20): 3065-3070
DOI: 10.1055/s-0040-1707186
DOI: 10.1055/s-0040-1707186
paper
Metal-Free Insertion of Sulfoxonium Ylides into Arylamines in Water
This work was supported by the National Natural Science Foundation of China (grant numbers 81573286 and 81373259).Further Information
Publication History
Received: 25 May 2020
Accepted after revision: 12 June 2020
Publication Date:
21 July 2020 (online)
Abstract
Carbenoid-based N–H insertions have undergone significant development with respect to C–N bond formation in recent years. However, the existing methods suffer from unstable starting materials, expensive metal catalysts and organic solvents. Herein, insertion of sulfoxonium ylides into arylamines under metal-free conditions has been developed. The method employs water as solvent at mild temperature and is amenable to the late-stage modification of structurally complex bioactive compounds.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707186.
- Supporting Information
-
References
- 1a Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 1b Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008
- 2a Ullmann F. Ber. Dtsch. Chem. Ges. 1903; 36: 2382
- 2b Goldberg I. Ber. Dtsch. Chem. Ges. 1906; 39: 1691
- 2c Bariwal J, van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
- 2d Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
- 2e Coman SM, Parvulescu VI. Org. Process Res. Dev. 2015; 19: 1327
- 2f R.-C., P., Buchwald S. L.; Chem. Rev.; 2016, 116: 12564
- 3a Gillingham D, Fei N. Chem. Soc. Rev. 2013; 42: 4918
- 3b Abu-Elfotoh A.-M. Tetrahedron Lett. 2017; 58: 4750
- 3c Arredondo VS, Hiew C, Gutman ES, Premachandra ID, Van Vranken DL. Angew. Chem. Int. Ed. 2017; 56: 4156
- 3d Aviv I, Gross Z. Chem. Eur. J. 2008; 14: 3995
- 3e Luo H, Wu G, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2015; 54: 14503
- 3f Sreenilayam G, Fasan R. Chem. Commun. 2015; 51: 1532
- 3g Zhu Y, Liu X, Dong S, Zhou Y, Li W, Lin L, Feng X. Angew. Chem. Int. Ed. 2014; 53: 1636
- 4a Jia M, Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
- 4b Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
- 5 Ingold CK, Jessop JA. J. Chem. Soc. 1930; 713
- 6a Li A.-H, Dai L.-X, Aggarwal VK. Chem. Rev. 1997; 97: 2341
- 6b Aggarwal VK, Winn CL. Acc. Chem. Res. 2004; 37: 611
- 6c Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
- 6d Lu L.-Q, Li T.-R, Wang Q, Xiao W.-J. Chem. Soc. Rev. 2017; 46: 4135
- 6e Xia X.-D, Lu L.-Q, Liu W.-Q, Chen D.-Z, Zheng Y.-H, Wu L.-Z, Xiao W.-J. Chem. Eur. J. 2016; 22: 8432
- 7a Bayer A, Vaitla J. Synthesis 2018; 51: 612
- 7b Burtoloso AC. B, Dias RM. P, Leonarczyk IA. Eur. J. Org. Chem. 2013; 5005
- 8a Baldwin JE, Adlington RM, Godfrey CR. A, Gollins DW, Vaughan JG. J. Chem. Soc., Chem. Commun. 1993; 1434
- 8b Mangion IK, Nwamba IK, Shevlin M, Huffman MA. Org. Lett. 2009; 11: 3566
- 9a Mangion IK, Ruck RT, Rivera N, Huffman MA, Shevlin M. Org. Lett. 2011; 13: 5480
- 9b Mangion IK, Weisel M. Tetrahedron Lett. 2010; 51: 5490
- 9c Phelps AM, Chan VS, Napolitano JG, Krabbe SW, Schomaker JM, Shekhar S. J. Org. Chem. 2016; 81: 4158
- 9d Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2017; 56: 4277
- 10 Dias RM, Burtoloso AC. Org. Lett. 2016; 18: 3034
- 11a Ball ZT. Acc. Chem. Res. 2013; 46: 560
- 11b Chen Z, Popp BV, Bovet CL, Ball ZT. ACS Chem. Biol. 2011; 6: 920
- 11c Chen Z, Vohidov F, Coughlin JM, Stagg LJ, Arold ST. J. Am. Chem. Soc. 2012; 134: 10138
- 11d Antos JM, McFarland JM, Iavarone AT, Francis MB. J. Am. Chem. Soc. 2009; 131: 6301
- 11e Sreenilayam G, Fasan R. Chem. Commun. 2015; 51: 1532
- 11f Tishinov K, Schmidt K, Haussinger D, Gillingham DG. Angew. Chem. Int. Ed. 2012; 51: 12000
- 12 Konig H, Metzger H. Chem. Ber. 1965; 98: 3733