J Pediatr Infect Dis 2020; 15(02): 086-090
DOI: 10.1055/s-0039-3401892
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Investigation of Respiratory Tract Pathogen Human Parechoviruses in Konya, Turkey

1   Department of Medical Microbiology, Medical Faculty, KTO Karatay University, Konya, Turkey
,
2   Department of Medical Microbiology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
,
2   Department of Medical Microbiology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
› Author Affiliations
Further Information

Publication History

30 May 2019

12 November 2019

Publication Date:
31 December 2019 (online)

Abstract

Objective This study aims to better understand the epidemiological characteristics of parechoviruses and to determine the genotype distribution in Konya, Turkey.

Methods In this study, nasal and throat swab samples taken from 1,110 children who were diagnosed with respiratory tract infection (bronchitis, pneumonia, asthmatic bronchitis, and other respiratory diseases) and applied to various pediatric polyclinics of Meram Medical Faculty Hospital, Necmettin Erbakan University between September 2017 and March 2019 were evaluated. Human parechovirus (HPeV) RNA was investigated by multiplex polymerase chain reaction (PCR) in respiratory tract samples. Specific genotypes of the positive samples were identified by real-time PCR amplification of the VP1 region followed by sequence analysis.

Results Of the total of 1,110 samples, 4 were positive for HPeV. Of these, HPeV1 was the most predominant genotype (n = 3), followed by HPeV4 (n = 1). HPeV infections were detected throughout the year in Konya, Turkey.

Conclusion Although the number of positive samples for HPeV is low, these findings provide information about the genetic diversity and epidemiological of HPeV genotypes circulating in pediatric patients in Turkey. This is the first study to detect prevalence and genotyping of HPeV in respiratory tract infections in Turkey. HPeVs should be considered as causative agents especially in infants with sepsis, meningitis, or encephalitis, and routine testing panels for HPeV detection should be available in hospital laboratories. Further studies using molecular epidemiological methods will be beneficial for identifying genotypes of all HPeVs involved in the etiology and for better monitoring of these infections.

 
  • References

  • 1 Stanway G, Joki-Korpela P, Hyypiä T. Human parechoviruses--biology and clinical significance. Rev Med Virol 2000; 10 (01) 57-69
  • 2 Joki-Korpela P, Hyypiä T. Diagnosis and epidemiology of echovirus 22 infections. Clin Infect Dis 1998; 27 (01) 129-136
  • 3 Stanway G, Brown F, Christian P. , et al. Family picornaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. , eds. Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses. London: Elsevier; 2005: 757-778
  • 4 Mladenova Z, Dikova A, Thongprachum A. , et al. Diversity of human parechoviruses in Bulgaria, 2011: detection of rare genotypes 8 and 10. Infect Genet Evol 2015; 36: 315-322
  • 5 Nix WA, Khetsuriani N, Peñaranda S. , et al. Diversity of picornaviruses in rural Bolivia. J Gen Virol 2013; 94 (Pt 9): 2017-2028
  • 6 Shah G, Robinson JL. The particulars on parechovirus. Can J Infect Dis Med Microbiol 2014; 25 (04) 186-188
  • 7 Stanway G, Kalkkinen N, Roivainen M. , et al. Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. J Virol 1994; 68 (12) 8232-8238
  • 8 Nateri AS, Hughes PJ, Stanway G. In vivo and in vitro identification of structural and sequence elements of the human parechovirus 5′ untranslated region required for internal initiation. J Virol 2000; 74 (14) 6269-6277
  • 9 Esposito S, Rahamat-Langendoen J, Ascolese B, Senatore L, Castellazzi L, Niesters HG. Pediatric parechovirus infections. J Clin Virol 2014; 60 (02) 84-89
  • 10 Renaud C, Harrison CJ. Human parechovirus 3: the most common viral cause of meningoencephalitis in young infants. Infect Dis Clin North Am 2015; 29 (03) 415-428
  • 11 Khatami A, McMullan BJ, Webber M. , et al. Sepsis-like disease in infants due to human parechovirus type 3 during an outbreak in Australia. Clin Infect Dis 2015; 60 (02) 228-236
  • 12 Vergnano S, Kadambari S, Whalley K. , et al. Characteristics and outcomes of human parechovirus infection in infants (2008-2012). Eur J Pediatr 2015; 174 (07) 919-924
  • 13 Harvala H, Simmonds P. Human parechoviruses: biology, epidemiology and clinical significance. J Clin Virol 2009; 45 (01) 1-9
  • 14 Brouwer L, Karelehto E, Han AX. , et al. High frequency and diversity of parechovirus A in a cohort of Malawian children. Arch Virol 2019; 164 (03) 799-806
  • 15 Nix WA, Maher K, Pallansch MA, Oberste MS. Parechovirus typing in clinical specimens by nested or semi-nested PCR coupled with sequencing. J Clin Virol 2010; 48 (03) 202-207
  • 16 Chen BC, Cheng MF, Huang TS. , et al. Detection and identification of human parechoviruses from clinical specimens. Diagn Microbiol Infect Dis 2009; 65 (03) 254-260
  • 17 Benschop KS, Schinkel J, Luken ME. , et al. Fourth human parechovirus serotype. Emerg Infect Dis 2006; 12 (10) 1572-1575
  • 18 Ito M, Yamashita T, Tsuzuki H. , et al. Detection of human parechoviruses from clinical stool samples in Aichi, Japan. J Clin Microbiol 2010; 48 (08) 2683-2688
  • 19 Limtong S, Kaewwichian R, Jindamorakot S, Yongmanitchai W, Nakase T. Candida wangnamkhiaoensis sp. nov., an anamorphic yeast species in the Hyphopichia clade isolated in Thailand. Antonie van Leeuwenhoek 2012; 102 (01) 23-28
  • 20 Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10 (03) 512-526
  • 21 Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 2016; 33 (07) 1870-1874
  • 22 Harvala H, Robertson I, McWilliam Leitch EC. , et al. Epidemiology and clinical associations of human parechovirus respiratory infections. J Clin Microbiol 2008; 46 (10) 3446-3453
  • 23 Benschop K, Molenkamp R, van der Ham A, Wolthers K, Beld M. Rapid detection of human parechoviruses in clinical samples by real-time PCR. J Clin Virol 2008; 41 (02) 69-74
  • 24 Benschop K, Thomas X, Serpenti C, Molenkamp R, Wolthers K. High prevalence of human parechovirus (HPeV) genotypes in the Amsterdam region and identification of specific HPeV variants by direct genotyping of stool samples. J Clin Microbiol 2008; 46 (12) 3965-3970
  • 25 Nix WA, Oberste MS, Pallansch MA. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol 2006; 44 (08) 2698-2704
  • 26 Rahimi P, Tabatabaie H, Gouya MM. , et al. Direct identification of non-polio enteroviruses in residual paralysis cases by analysis of VP1 sequences. J Clin Virol 2009; 45 (02) 139-141
  • 27 Mamishi S, Rahimi P, Sohrabi A. , et al. Direct serotyping of enteroviruses in cerebrospinal fluid from children with aseptic meningitis. Jundishapur J Microbiol 2013; 6 (09) ee7852
  • 28 Oberste MS, Nix WA, Maher K, Pallansch MA. Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J Clin Virol 2003; 26 (03) 375-377
  • 29 Sedmak G, Nix WA, Jentzen J. , et al. Infant deaths associated with human parechovirus infection in Wisconsin. Clin Infect Dis 2010; 50 (03) 357-361
  • 30 Boivin G, Abed Y, Boucher FD. Human parechovirus 3 and neonatal infections. Emerg Infect Dis 2005; 11 (01) 103-105
  • 31 Wolthers KC, Benschop KS, Schinkel J. , et al. Human parechoviruses as an important viral cause of sepsis like illness and meningitis in young children. Clin Infect Dis 2008; 47 (03) 358-363
  • 32 van der Sanden S, de Bruin E, Vennema H, Swanink C, Koopmans M, van der Avoort H. Prevalence of human parechovirus in the Netherlands in 2000 to 2007. J Clin Microbiol 2008; 46 (09) 2884-2889
  • 33 Zhong H, Lin Y, Sun J. , et al. Prevalence and genotypes of human parechovirus in stool samples from hospitalized children in Shanghai, China, 2008 and 2009. J Med Virol 2011; 83 (08) 1428-1434
  • 34 Harvala H, Robertson I, Chieochansin T, McWilliam Leitch EC, Templeton K, Simmonds P. Specific association of human parechovirus type 3 with sepsis and fever in young infants, as identified by direct typing of cerebrospinal fluid samples. J Infect Dis 2009; 199 (12) 1753-1760
  • 35 Selvarangan R, Nzabi M, Selvaraju SB, Ketter P, Carpenter C, Harrison CJ. Human parechovirus 3 causing sepsis-like illness in children from midwestern United States. Pediatr Infect Dis J 2011; 30 (03) 238-242
  • 36 Walters B, Peñaranda S, Nix WA. , et al. Detection of human parechovirus (HPeV)-3 in spinal fluid specimens from pediatric patients in the Chicago area. J Clin Virol 2011; 52 (03) 187-191
  • 37 Benschop KS, Schinkel J, Minnaar RP. , et al. Human parechovirus infections in Dutch children and the association between serotype and disease severity. Clin Infect Dis 2006; 42 (02) 204-210
  • 38 Harvala H, McLeish N, Kondracka J. , et al. Comparison of human parechovirus and enterovirus detection frequencies in cerebrospinal fluid samples collected over a 5-year period in edinburgh: HPeV type 3 identified as the most common picornavirus type. J Med Virol 2011; 83 (05) 889-896
  • 39 Pajkrt D, Benschop KS, Westerhuis B, Molenkamp R, Spanjerberg L, Wolthers KC. Clinical characteristics of human parechoviruses 4-6 infections in young children. Pediatr Infect Dis J 2009; 28 (11) 1008-1010
  • 40 Siafakas N, Markoulatos P, Levidiotou-Stefanou S. Molecular identification of enteroviruses responsible for an outbreak of aseptic meningitis; implications in clinical practice and epidemiology. Mol Cell Probes 2004; 18 (06) 389-398