Semin Respir Crit Care Med 2019; 40(04): 508-523
DOI: 10.1055/s-0039-1693705
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Management and Prevention of Central Venous Catheter-Related Infections in the ICU

Niccolò Buetti
1   IAME UMR1137-Team 5, Decision Sciences in Infectious Diseases Prevention, Control and Care, Paris Diderot University-Inserm, Sorbonne Paris Cité, France
,
Jean-François Timsit
1   IAME UMR1137-Team 5, Decision Sciences in Infectious Diseases Prevention, Control and Care, Paris Diderot University-Inserm, Sorbonne Paris Cité, France
2   Medical and Infectious Diseases Intensive Care Unit, APHP, Bichat University hospital, Paris, France
› Author Affiliations
Further Information

Publication History

Publication Date:
04 October 2019 (online)

Abstract

Central venous catheter-related bloodstream infections (CR-BSI) are a frequent event in the intensive care unit (ICU) setting. In contrast to other nosocomial infections, most risk factors for CR-BSI are linked to the device and can be prevented efficiently. Rates of CR-BSI higher than 1 per 1,000 catheter days are no longer acceptable. A continuous quality improvement program is effective to reduce them. Key elements of prevention of CR-BSI are hand hygiene, avoidance of insertion of unnecessary catheters, full sterile barrier precautions at insertion, preferential use of subclavian venous insertion site, cutaneous antisepsis with 2% chlorhexidine alcoholic preparation, use of chlorhexidine-impregnated dressings, immediate replacement of moistened or detached catheter dressings, and removal of catheters as soon as possible. Audit and feedback of the process of care, infection rates, and periodic re-education of health care providers are other instrumental tools in the prevention of CR-BSI. Catheter removal is the main therapeutic intervention, especially recommended in the case of sepsis or shock. While awaiting culture results, an empiric antimicrobial treatment of CR-BSI should target gram-positive microorganism (i.e., Staphylococcus aureus) and gram-negative coverage should be based on clinical variables, patients' risk factors, and previous colonization status. While a short course of antimicrobials (7 days) is sufficient for noncomplicated CR-BSI, a longer course of 14 days should be preferred for uncomplicated S. aureus and Candida CR-BSI. In case of persisting fever or positive blood culture after 3 days despite adequate antimicrobial therapy and catheter removal, catheter-related complications (e.g., endocarditis, thrombophlebitis, septic metastasis) should be ruled out.

 
  • References

  • 1 European Centre for Disease Prevention and Control. Healthcare-associated infections acquired in intensive care units - annual epidemiological report for 2015. Stockholm (Sweden): European Centre for Disease Prevention and Control; 2017 . Available at: https://ecdc.europa.eu/sites/portal/files/documents/AER_for_2015-healthcare-associated-infections_0.pdf . Accessed January 16, 2019
  • 2 Dudeck MA, Horan TC, Peterson KD. , et al. National Healthcare Safety Network report, data summary for 2011, device-associated module. Am J Infect Control 2013; 41 (04) 286-300
  • 3 Chopra V, Anand S, Hickner A. , et al. Risk of venous thromboembolism associated with peripherally inserted central catheters: a systematic review and meta-analysis. Lancet 2013; 382 (9889): 311-325
  • 4 Ziegler MJ, Pellegrini DC, Safdar N. Attributable mortality of central line associated bloodstream infection: systematic review and meta-analysis. Infection 2015; 43 (01) 29-36
  • 5 Adrie C, Garrouste-Orgeas M, Ibn Essaied W. , et al; OUTCOMEREA Study Group*. Attributable mortality of ICU-acquired bloodstream infections: impact of the source, causative micro-organism, resistance profile and antimicrobial therapy. J Infect 2017; 74 (02) 131-141
  • 6 Warren DK, Quadir WW, Hollenbeak CS, Elward AM, Cox MJ, Fraser VJ. Attributable cost of catheter-associated bloodstream infections among intensive care patients in a nonteaching hospital. Crit Care Med 2006; 34 (08) 2084-2089
  • 7 Schwebel C, Lucet JC, Vesin A. , et al. Economic evaluation of chlorhexidine-impregnated sponges for preventing catheter-related infections in critically ill adults in the dressing study. Crit Care Med 2012; 40 (01) 11-17
  • 8 Marschall J, Mermel LA, Fakih M. , et al; Society for Healthcare Epidemiology of America. Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 2014; 35 (07) 753-771
  • 9 Bell T, O'Grady NP. Prevention of central line-associated bloodstream infections. Infect Dis Clin North Am 2017; 31 (03) 551-559
  • 10 O'Grady NP, Alexander M, Burns LA. , et al; Healthcare Infection Control Practices Advisory Committee (HICPAC). Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 2011; 52 (09) e162-e193
  • 11 Mermel LA. What is the predominant source of intravascular catheter infections?. Clin Infect Dis 2011; 52 (02) 211-212
  • 12 Buetti N, Lo Priore E, Atkinson A, Widmer AF, Kronenberg A, Marschall J. ; Swiss Centre for Antibiotic Resistance (ANRESIS). Catheter-related infections: does the spectrum of microbial causes change over time? A nationwide surveillance study. BMJ Open 2018; 8 (12) e023824
  • 13 Lorente L, Jiménez A, Santana M. , et al. Microorganisms responsible for intravascular catheter-related bloodstream infection according to the catheter site. Crit Care Med 2007; 35 (10) 2424-2427
  • 14 Rupp ME, Karnatak R. Intravascular catheter-related bloodstream infections. Infect Dis Clin North Am 2018; 32 (04) 765-787
  • 15 Mermel LA, Allon M, Bouza E. , et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009; 49 (01) 1-45 [Note: Dosage error in article text. corrected in "Clin Infect Dis. 2010 Apr 1;50(7):1079"]
  • 16 Safdar N, Maki DG. Inflammation at the insertion site is not predictive of catheter-related bloodstream infection with short-term, noncuffed central venous catheters. Crit Care Med 2002; 30 (12) 2632-2635
  • 17 Timsit JF, L'Hériteau F, Lepape A. , et al. A multicentre analysis of catheter-related infection based on a hierarchical model. Intensive Care Med 2012; 38 (10) 1662-1672
  • 18 Souweine B, Lautrette A, Gruson D. , et al. Ethanol lock and risk of hemodialysis catheter infection in critically ill patients. A randomized controlled trial. Am J Respir Crit Care Med 2015; 191 (09) 1024-1032
  • 19 Mimoz O, Lucet JC, Kerforne T. , et al; CLEAN trial investigators. Skin antisepsis with chlorhexidine-alcohol versus povidone iodine-alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet 2015; 386 (10008): 2069-2077
  • 20 French recommendations 2019. Management of intra-vascular accesses in intensive care unit. Available at: https://www.srlf.org/wp-content/uploads/2019/04/20190417-RFE-Abords-vasculaires.pdf . Accessed April 23, 2019
  • 21 Sherertz RJ, Raad II, Belani A. , et al. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol 1990; 28 (01) 76-82
  • 22 Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 1977; 296 (23) 1305-1309
  • 23 Safdar N, Fine JP, Maki DG. Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med 2005; 142 (06) 451-466
  • 24 Brun-Buisson C, Abrouk F, Legrand P, Huet Y, Larabi S, Rapin M. Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip cultures. Arch Intern Med 1987; 147 (05) 873-877
  • 25 Erb S, Frei R, Schregenberger K, Dangel M, Nogarth D, Widmer AF. Sonication for diagnosis of catheter-related infection is not better than traditional roll-plate culture: a prospective cohort study with 975 central venous catheters. Clin Infect Dis 2014; 59 (04) 541-544
  • 26 Souweine B, Heng AE, Aumeran C. , et al. Do antibiotics administered at the time of central venous catheter removal interfere with the evaluation of colonization?. Intensive Care Med 2008; 34 (02) 286-291
  • 27 Timsit JF, Rupp M, Bouza E. , et al. A state of the art review on optimal practices to prevent, recognize, and manage complications associated with intravascular devices in the critically ill. Intensive Care Med 2018; 44 (06) 742-759
  • 28 Rijnders BJ, Peetermans WE, Verwaest C, Wilmer A, Van Wijngaerden E. Watchful waiting versus immediate catheter removal in ICU patients with suspected catheter-related infection: a randomized trial. Intensive Care Med 2004; 30 (06) 1073-1080
  • 29 Bouza E, Muñoz P, Burillo A. , et al; Cardiovascular Infection Study Group. The challenge of anticipating catheter tip colonization in major heart surgery patients in the intensive care unit: are surface cultures useful?. Crit Care Med 2005; 33 (09) 1953-1960
  • 30 Pérez-Granda MJ, Guembe M, Cruces R, Bouza E. Vascular catheter colonization: surveillance based on culture of needleless connectors. Crit Care 2016; 20 (01) 166-121
  • 31 Blot F, Nitenberg G, Chachaty E. , et al. Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 1999; 354 (9184): 1071-1077
  • 32 Raad I, Hanna HA, Alakech B, Chatzinikolaou I, Johnson MM, Tarrand J. Differential time to positivity: a useful method for diagnosing catheter-related bloodstream infections. Ann Intern Med 2004; 140 (01) 18-25
  • 33 Bouza E, Alvarado N, Alcalá L. , et al. A prospective, randomized, and comparative study of 3 different methods for the diagnosis of intravascular catheter colonization. Clin Infect Dis 2005; 40 (08) 1096-1100
  • 34 Catton JA, Dobbins BM, Kite P. , et al. In situ diagnosis of intravascular catheter-related bloodstream infection: a comparison of quantitative culture, differential time to positivity, and endoluminal brushing. Crit Care Med 2005; 33 (04) 787-791
  • 35 Guembe M, Rodríguez-Créixems M, Sánchez-Carrillo C, Pérez-Parra A, Martín-Rabadán P, Bouza E. How many lumens should be cultured in the conservative diagnosis of catheter-related bloodstream infections?. Clin Infect Dis 2010; 50 (12) 1575-1579
  • 36 Park KH, Lee MS, Lee SO. , et al. Diagnostic usefulness of differential time to positivity for catheter-related candidemia. J Clin Microbiol 2014; 52 (07) 2566-2572
  • 37 Bouza E, Alcalá L, Muñoz P, Martín-Rabadán P, Guembe M, Rodríguez-Créixems M. ; GEIDI and the COMIC study groups. Can microbiologists help to assess catheter involvement in candidaemic patients before removal?. Clin Microbiol Infect 2013; 19 (02) E129-E135
  • 38 Kaasch AJ, Rieg S, Hellmich M, Kern WV, Seifert H. Differential time to positivity is not predictive for central line-related Staphylococcus aureus bloodstream infection in routine clinical care. J Infect 2014; 68 (01) 58-61
  • 39 Krause R, Valentin T, Hönigl M, Zollner-Schwetz I. Differential time to positivity is not predictive for central line-related Staphylococcus aureus bloodstream infection in routine clinical care. J Infect 2014; 69 (03) 293-294
  • 40 Bouzidi H, Emirian A, Marty A. , et al. Differential time to positivity of central and peripheral blood cultures is inaccurate for the diagnosis of Staphylococcus aureus long-term catheter-related sepsis. J Hosp Infect 2018; 99 (02) 192-199
  • 41 Laupland KB, Koulenti D, Schwebel C. The CVC and CRBSI: don't use it and lose it!. Intensive Care Med 2018; 44 (02) 238-240
  • 42 van der Kooi T, Sax H, Pittet D. , et al; PROHIBIT consortium. Prevention of hospital infections by intervention and training (PROHIBIT): results of a pan-European cluster-randomized multicentre study to reduce central venous catheter-related bloodstream infections. Intensive Care Med 2018; 44 (01) 48-60
  • 43 Cardenas-Garcia J, Schaub KF, Belchikov YG, Narasimhan M, Koenig SJ, Mayo PH. Safety of peripheral intravenous administration of vasoactive medication. J Hosp Med 2015; 10 (09) 581-585
  • 44 Datar S, Gutierrez E, Schertz A, Vachharajani V. Safety of phenylephrine infusion through peripheral intravenous catheter in the neurological intensive care unit. J Intensive Care Med 2018; 33 (10) 589-592
  • 45 Loveday HP, Wilson JA, Pratt RJ. , et al; UK Department of Health. epic3: national evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J Hosp Infect 2014; 86 (Suppl. 01) S1-S70
  • 46 Raad II, Hohn DC, Gilbreath BJ. , et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 1994; 15 (4 Pt 1): 231-238
  • 47 Hu KK, Veenstra DL, Lipsky BA, Saint S. Use of maximal sterile barriers during central venous catheter insertion: clinical and economic outcomes. Clin Infect Dis 2004; 39 (10) 1441-1445
  • 48 Berenholtz SM, Pronovost PJ, Lipsett PA. , et al. Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med 2004; 32 (10) 2014-2020
  • 49 Zamora JL, Price MF, Chuang P, Gentry LO. Inhibition of povidone-iodine's bactericidal activity by common organic substances: an experimental study. Surgery 1985; 98 (01) 25-29
  • 50 Casey AL, Badia JM, Higgins A. , et al. Skin antisepsis: it's not only what you use, it's the way that you use it. J Hosp Infect 2017; 96 (03) 221-222
  • 51 Mimoz O, Chopra V, Timsit JF. What's new in catheter-related infection: skin cleansing and skin antisepsis. Intensive Care Med 2016; 42 (11) 1784-1786
  • 52 Mimoz O, Villeminey S, Ragot S. , et al. Chlorhexidine-based antiseptic solution vs alcohol-based povidone-iodine for central venous catheter care. Arch Intern Med 2007; 167 (19) 2066-2072
  • 53 Pages J, Hazera P, Mégarbane B. , et al; 3SITES Study Group. Comparison of alcoholic chlorhexidine and povidone-iodine cutaneous antiseptics for the prevention of central venous catheter-related infection: a cohort and quasi-experimental multicenter study. Intensive Care Med 2016; 42 (09) 1418-1426
  • 54 Vallés J, Fernández I, Alcaraz D. , et al. Prospective randomized trial of 3 antiseptic solutions for prevention of catheter colonization in an intensive care unit for adult patients. Infect Control Hosp Epidemiol 2008; 29 (09) 847-853
  • 55 Adams D, Quayum M, Worthington T, Lambert P, Elliott T. Evaluation of a 2% chlorhexidine gluconate in 70% isopropyl alcohol skin disinfectant. J Hosp Infect 2005; 61 (04) 287-290
  • 56 Bouadma L, Karpanen T, Elliott T. Chlorhexidine use in adult patients on ICU. Intensive Care Med 2018; 44 (12) 2232-2234
  • 57 Stickler DJ. Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol 2002; 92 (Suppl): 163S-170S
  • 58 Kampf G. Acquired resistance to chlorhexidine - is it time to establish an ‘antiseptic stewardship’ initiative?. J Hosp Infect 2016; 94 (03) 213-227
  • 59 Lee AS, Macedo-Vinas M, François P. , et al. Impact of combined low-level mupirocin and genotypic chlorhexidine resistance on persistent methicillin-resistant Staphylococcus aureus carriage after decolonization therapy: a case-control study. Clin Infect Dis 2011; 52 (12) 1422-1430
  • 60 Mimoz O, Chopra V, Widmer A. What's new in skin antisepsis for short-term intravascular catheters: new data to address old problems?. Intensive Care Med 2016; 42 (12) 2043-2045
  • 61 Pham NH, Weiner JM, Reisner GS, Baldo BA. Anaphylaxis to chlorhexidine. Case report. Implication of immunoglobulin E antibodies and identification of an allergenic determinant. Clin Exp Allergy 2000; 30 (07) 1001-1007
  • 62 Climo MW, Yokoe DS, Warren DK. , et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med 2013; 368 (06) 533-542
  • 63 Huang SS, Septimus E, Kleinman K. , et al; CDC Prevention Epicenters Program; AHRQ DECIDE Network and Healthcare-Associated Infections Program. Targeted versus universal decolonization to prevent ICU infection. N Engl J Med 2013; 368 (24) 2255-2265
  • 64 Milstone AM, Elward A, Song X. , et al; Pediatric SCRUB Trial Study Group. Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial. Lancet 2013; 381 (9872): 1099-1106
  • 65 Afonso E, Blot K, Blot S. Prevention of hospital-acquired bloodstream infections through chlorhexidine gluconate-impregnated washcloth bathing in intensive care units: a systematic review and meta-analysis of randomised crossover trials. Euro Surveill 2016; 21 (46) 21
  • 66 Parienti JJ, du Cheyron D, Timsit JF. , et al. Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. Crit Care Med 2012; 40 (05) 1627-1634
  • 67 Parienti JJ, Mongardon N, Mégarbane B. , et al; 3SITES Study Group. Intravascular complications of central venous catheterization by insertion site. N Engl J Med 2015; 373 (13) 1220-1229
  • 68 Timsit JF, Bouadma L, Mimoz O. , et al. Jugular versus femoral short-term catheterization and risk of infection in intensive care unit patients. Causal analysis of two randomized trials. Am J Respir Crit Care Med 2013; 188 (10) 1232-1239
  • 69 Ge X, Cavallazzi R, Li C, Pan SM, Wang YW, Wang FL. Central venous access sites for the prevention of venous thrombosis, stenosis and infection. Cochrane Database Syst Rev 2012; (03) CD004084
  • 70 Parienti JJ. Catheter-related bloodstream infection in jugular versus subclavian central catheterization. Crit Care Med 2017; 45 (07) e734-e735
  • 71 Parienti JJ, Thirion M, Mégarbane B. , et al; Members of the Cathedia Study Group. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA 2008; 299 (20) 2413-2422
  • 72 Marik PE, Flemmer M, Harrison W. The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med 2012; 40 (08) 2479-2485
  • 73 Arvaniti K, Lathyris D, Blot S, Apostolidou-Kiouti F, Koulenti D, Haidich AB. Cumulative evidence of randomized controlled and observational studies on catheter-related infection risk of central venous catheter insertion site in ICU patients: a pairwise and network meta-analysis. Crit Care Med 2017; 45 (04) e437-e448
  • 74 Karpanen TJ, Casey AL, Whitehouse T. , et al. A clinical evaluation of two central venous catheter stabilization systems. Ann Intensive Care 2019; 9 (01) 49-56
  • 75 Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for subclavian or femoral vein catheterization. Cochrane Database Syst Rev 2015; 1: CD011447
  • 76 Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. Cochrane Database Syst Rev 2015; 1: CD006962
  • 77 Milling Jr TJ, Rose J, Briggs WM. , et al. Randomized, controlled clinical trial of point-of-care limited ultrasonography assistance of central venous cannulation: the Third Sonography Outcomes Assessment Program (SOAP-3) trial. Crit Care Med 2005; 33 (08) 1764-1769
  • 78 Cartier V, Haenny A, Inan C, Walder B, Zingg W. No association between ultrasound-guided insertion of central venous catheters and bloodstream infection: a prospective observational study. J Hosp Infect 2014; 87 (02) 103-108
  • 79 Timsit JF, Farkas JC, Boyer JM. , et al. Central vein catheter-related thrombosis in intensive care patients: incidence, risks factors, and relationship with catheter-related sepsis. Chest 1998; 114 (01) 207-213
  • 80 Mehall JR, Saltzman DA, Jackson RJ, Smith SD. Fibrin sheath enhances central venous catheter infection. Crit Care Med 2002; 30 (04) 908-912
  • 81 Zhong L, Wang HL, Xu B. , et al. Normal saline versus heparin for patency of central venous catheters in adult patients - a systematic review and meta-analysis. Crit Care 2017; 21 (01) 5-13
  • 82 Kahale LA, Tsolakian IG, Hakoum MB. , et al. Anticoagulation for people with cancer and central venous catheters. Cochrane Database Syst Rev 2018; 6: CD006468
  • 83 Shah PS, Shah N. Heparin-bonded catheters for prolonging the patency of central venous catheters in children. Cochrane Database Syst Rev 2014; (02) CD005983
  • 84 Abdelkefi A, Achour W, Ben Othman T. , et al. Use of heparin-coated central venous lines to prevent catheter-related bloodstream infection. J Support Oncol 2007; 5 (06) 273-278
  • 85 Eyer S, Brummitt C, Crossley K, Siegel R, Cerra F. Catheter-related sepsis: prospective, randomized study of three methods of long-term catheter maintenance. Crit Care Med 1990; 18 (10) 1073-1079
  • 86 Uldall PR, Merchant N, Woods F, Yarworski U, Vas S. Changing subclavian haemodialysis cannulas to reduce infection. Lancet 1981; 1 (8234): 1373
  • 87 Timsit JF. Scheduled replacement of central venous catheters is not necessary. Infect Control Hosp Epidemiol 2000; 21 (06) 371-374
  • 88 Lucet JC, Bouadma L, Zahar JR. , et al. Infectious risk associated with arterial catheters compared with central venous catheters. Crit Care Med 2010; 38 (04) 1030-1035
  • 89 Timsit JF, Bouadma L, Ruckly S. , et al. Dressing disruption is a major risk factor for catheter-related infections. Crit Care Med 2012; 40 (06) 1707-1714
  • 90 Timsit JF, Schwebel C, Bouadma L. , et al; Dressing Study Group. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA 2009; 301 (12) 1231-1241
  • 91 Pivkina AI, Gusarov VG, Blot SI, Zhivotneva IV, Pasko NV, Zamyatin MN. Effect of an acrylic terpolymer barrier film beneath transparent catheter dressings on skin integrity, risk of dressing disruption, catheter colonisation and infection. Intensive Crit Care Nurs 2018; 46: 17-23
  • 92 Timsit JF, Mimoz O, Mourvillier B. , et al. Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med 2012; 186 (12) 1272-1278
  • 93 Ullman AJ, Cooke ML, Mitchell M. , et al. Dressing and securement for central venous access devices (CVADs): a Cochrane systematic review. Int J Nurs Stud 2016; 59: 177-196
  • 94 Safdar N, O'Horo JC, Ghufran A. , et al. Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: a meta-analysis*. Crit Care Med 2014; 42 (07) 1703-1713
  • 95 Ullman AJ, Cooke ML, Gillies D. , et al. Optimal timing for intravascular administration set replacement. Cochrane Database Syst Rev 2013; (09) CD003588
  • 96 Rickard CM, Marsh NM, Webster J. , et al. Intravascular device administration sets: replacement after standard versus prolonged use in hospitalised patients-a study protocol for a randomised controlled trial (the RSVP trial). BMJ Open 2015; 5 (02) e007257
  • 97 Bennett SN, McNeil MM, Bland LA. , et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 1995; 333 (03) 147-154
  • 98 Matlow AG, Kitai I, Kirpalani H. , et al. A randomized trial of 72- versus 24-hour intravenous tubing set changes in newborns receiving lipid therapy. Infect Control Hosp Epidemiol 1999; 20 (07) 487-493
  • 99 Moureau NL, Flynn J. Disinfection of needleless connector hubs: clinical evidence systematic review. Nurs Res Pract 2015; 2015: 796762
  • 100 Rupp ME, Yu S, Huerta T. , et al. Adequate disinfection of a split-septum needleless intravascular connector with a 5-second alcohol scrub. Infect Control Hosp Epidemiol 2012; 33 (07) 661-665
  • 101 Simmons S, Bryson C, Porter S. “Scrub the hub”: cleaning duration and reduction in bacterial load on central venous catheters. Crit Care Nurs Q 2011; 34 (01) 31-35
  • 102 Field K, McFarlane C, Cheng AC. , et al. Incidence of catheter-related bloodstream infection among patients with a needleless, mechanical valve-based intravenous connector in an Australian hematology-oncology unit. Infect Control Hosp Epidemiol 2007; 28 (05) 610-613
  • 103 Maragakis LL, Bradley KL, Song X. , et al. Increased catheter-related bloodstream infection rates after the introduction of a new mechanical valve intravenous access port. Infect Control Hosp Epidemiol 2006; 27 (01) 67-70
  • 104 Rupp ME, Sholtz LA, Jourdan DR. , et al. Outbreak of bloodstream infection temporally associated with the use of an intravascular needleless valve. Clin Infect Dis 2007; 44 (11) 1408-1414
  • 105 Jarvis WR, Murphy C, Hall KK. , et al. Health care-associated bloodstream infections associated with negative- or positive-pressure or displacement mechanical valve needleless connectors. Clin Infect Dis 2009; 49 (12) 1821-1827
  • 106 Voor In 't Holt AF, Helder OK, Vos MC. , et al. Antiseptic barrier cap effective in reducing central line-associated bloodstream infections: a systematic review and meta-analysis. Int J Nurs Stud 2017; 69: 34-40
  • 107 Lai NM, Chaiyakunapruk N, Lai NA, O'Riordan E, Pau WS, Saint S. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst Rev 2016; 3: CD007878
  • 108 Ramos ER, Reitzel R, Jiang Y. , et al. Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. Crit Care Med 2011; 39 (02) 245-251
  • 109 León C, Ruiz-Santana S, Rello J. , et al; Cabaña Study Group. Benefits of minocycline and rifampin-impregnated central venous catheters. A prospective, randomized, double-blind, controlled, multicenter trial. Intensive Care Med 2004; 30 (10) 1891-1899
  • 110 Darouiche RO, Berger DH, Khardori N. , et al. Comparison of antimicrobial impregnation with tunneling of long-term central venous catheters: a randomized controlled trial. Ann Surg 2005; 242 (02) 193-200
  • 111 Hockenhull JC, Dwan KM, Smith GW. , et al. The clinical effectiveness of central venous catheters treated with anti-infective agents in preventing catheter-related bloodstream infections: a systematic review. Crit Care Med 2009; 37 (02) 702-712
  • 112 Jardine LA, Inglis GD, Davies MW. Prophylactic systemic antibiotics to reduce morbidity and mortality in neonates with central venous catheters. Cochrane Database Syst Rev 2008; (01) CD006179
  • 113 McKee R, Dunsmuir R, Whitby M, Garden OJ. Does antibiotic prophylaxis at the time of catheter insertion reduce the incidence of catheter-related sepsis in intravenous nutrition?. J Hosp Infect 1985; 6 (04) 419-425
  • 114 Sandoe JA, Kumar B, Stoddart B. , et al. Effect of extended perioperative antibiotic prophylaxis on intravascular catheter colonization and infection in cardiothoracic surgery patients. J Antimicrob Chemother 2003; 52 (05) 877-879
  • 115 Zacharioudakis IM, Zervou FN, Arvanitis M, Ziakas PD, Mermel LA, Mylonakis E. Antimicrobial lock solutions as a method to prevent central line-associated bloodstream infections: a meta-analysis of randomized controlled trials. Clin Infect Dis 2014; 59 (12) 1741-1749
  • 116 Hemmelgarn BR, Manns BJ, Soroka SD. , et al. Effectiveness and cost of weekly recombinant tissue plasminogen activator hemodialysis catheter locking solution. Clin J Am Soc Nephrol 2018; 13 (03) 429-435
  • 117 Zhao Y, Li Z, Zhang L. , et al. Citrate versus heparin lock for hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis 2014; 63 (03) 479-490
  • 118 Hermite L, Quenot JP, Nadji A. , et al. Sodium citrate versus saline catheter locks for non-tunneled hemodialysis central venous catheters in critically ill adults: a randomized controlled trial. Intensive Care Med 2012; 38 (02) 279-285
  • 119 Parienti JJ, Deryckère S, Mégarbane B. , et al; Cathedia Study Group. Quasi-experimental study of sodium citrate locks and the risk of acute hemodialysis catheter infection among critically ill patients. Antimicrob Agents Chemother 2014; 58 (10) 5666-5672
  • 120 Bruyère R, Soudry-Faure A, Capellier G. , et al. Comparison of heparin to citrate as a catheter locking solution for non-tunneled central venous hemodialysis catheters in patients requiring renal replacement therapy for acute renal failure (VERROU-REA study): study protocol for a randomized controlled trial. Trials 2014; 15: 449-456
  • 121 Robert J, Fridkin SK, Blumberg HM. , et al. The influence of the composition of the nursing staff on primary bloodstream infection rates in a surgical intensive care unit. Infect Control Hosp Epidemiol 2000; 21 (01) 12-17
  • 122 Ista E, van der Hoven B, Kornelisse RF. , et al. Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis. Lancet Infect Dis 2016; 16 (06) 724-734
  • 123 Joint Commission. Available at: https://www.jointcommission.org/assets/1/6/CLABSI_Toolkit_Tool_3-18_CVC_Insertion_Bundles.pdf . Accessed February 28, 2019
  • 124 Furuya EY, Dick A, Perencevich EN, Pogorzelska M, Goldmann D, Stone PW. Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One 2011; 6 (01) e15452
  • 125 Pronovost P, Needham D, Berenholtz S. , et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 2006; 355 (26) 2725-2732
  • 126 Pérez Parra A, Cruz Menárguez M, Pérez Granda MJ, Tomey MJ, Padilla B, Bouza E. A simple educational intervention to decrease incidence of central line-associated bloodstream infection (CLABSI) in intensive care units with low baseline incidence of CLABSI. Infect Control Hosp Epidemiol 2010; 31 (09) 964-967
  • 127 Sawyer M, Weeks K, Goeschel CA. , et al. Using evidence, rigorous measurement, and collaboration to eliminate central catheter-associated bloodstream infections. Crit Care Med 2010; 38 (8, Suppl): S292-S298
  • 128 Shuman EK, Washer LL, Arndt JL. , et al. Analysis of central line-associated bloodstream infections in the intensive care unit after implementation of central line bundles. Infect Control Hosp Epidemiol 2010; 31 (05) 551-553
  • 129 Nicol PW, Watkins RE, Donovan RJ, Wynaden D, Cadwallader H. The power of vivid experience in hand hygiene compliance. J Hosp Infect 2009; 72 (01) 36-42
  • 130 Marang-van de Mheen PJ, van Bodegom-Vos L. Meta-analysis of the central line bundle for preventing catheter-related infections: a case study in appraising the evidence in quality improvement. BMJ Qual Saf 2016; 25 (02) 118-129
  • 131 Clack L, Zingg W, Saint S. , et al; PROHIBIT Consortium. Implementing infection prevention practices across European hospitals: an in-depth qualitative assessment. BMJ Qual Saf 2018; 27 (10) 771-780
  • 132 Cartier V, Inan C, Zingg W, Delhumeau C, Walder B, Savoldelli GL. Simulation-based medical education training improves short and long-term competency in, and knowledge of central venous catheter insertion: a before and after intervention study. Eur J Anaesthesiol 2016; 33 (08) 568-574
  • 133 Casey J, Davies J, Balshaw-Greer A, Taylor N, Crowe AV, McClelland P. Inserting tunnelled hemodialysis catheters using elective guidewire exchange from nontunnelled catheters: is there a greater risk of infection when compared with new-site replacement?. Hemodial Int 2008; 12 (01) 52-54
  • 134 Cook D, Randolph A, Kernerman P. , et al. Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 1997; 25 (08) 1417-1424
  • 135 Raad I, Hanna H, Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis 2007; 7 (10) 645-657
  • 136 Hanna H, Afif C, Alakech B. , et al. Central venous catheter-related bacteremia due to gram-negative bacilli: significance of catheter removal in preventing relapse. Infect Control Hosp Epidemiol 2004; 25 (08) 646-649
  • 137 Marschall J, Piccirillo ML, Fraser VJ, Doherty JA, Warren DK. Catheter removal versus retention in the management of catheter-associated enterococcal bloodstream infections. Can J Infect Dis Med Microbiol 2013; 24 (03) e83-e87
  • 138 Burnham JP, Rojek RP, Kollef MH. Catheter removal and outcomes of multidrug-resistant central-line-associated bloodstream infection. Medicine (Baltimore) 2018; 97 (42) e12782
  • 139 Lee YM, Moon C, Kim YJ, Lee HJ, Lee MS, Park KH. Clinical impact of delayed catheter removal for patients with central-venous-catheter-related gram-negative bacteraemia. J Hosp Infect 2018; 99 (01) 106-113
  • 140 Raad I, Kassar R, Ghannam D, Chaftari AM, Hachem R, Jiang Y. Management of the catheter in documented catheter-related coagulase-negative staphylococcal bacteremia: remove or retain?. Clin Infect Dis 2009; 49 (08) 1187-1194
  • 141 Park KH, Kim SH, Song EH. , et al. Development of bacteraemia or fungaemia after removal of colonized central venous catheters in patients with negative concomitant blood cultures. Clin Microbiol Infect 2010; 16 (06) 742-746
  • 142 Mrozek N, Lautrette A, Aumeran C. , et al. Bloodstream infection after positive catheter cultures: what are the risks in the intensive care unit when catheters are routinely cultured on removal?. Crit Care Med 2011; 39 (06) 1301-1305
  • 143 Guembe M, Rodríguez-Créixems M, Martín-Rabadán P, Alcalá L, Muñoz P, Bouza E. The risk of catheter-related bloodstream infection after withdrawal of colonized catheters is low. Eur J Clin Microbiol Infect Dis 2014; 33 (05) 729-734
  • 144 Buetti N, Lo Priore E, Atkinson A, Kronenberg A, Marschall J. ; Swiss Centre for Antibiotic Resistance (ANRESIS). Low incidence of subsequent bacteraemia or fungaemia after removal of a colonized intravascular catheter tip. Clin Microbiol Infect 2018; 24 (05) 548.e1-548.e3
  • 145 Buetti N, Lo Priore E, Sommerstein R, Atkinson A, Kronenberg A, Marschall J. ; Swiss Centre for Antibiotic resistance (ANRESIS). Epidemiology of subsequent bloodstream infections in the ICU. Crit Care 2018; 22 (01) 259-261
  • 146 Ekkelenkamp MB, van der Bruggen T, van de Vijver DA, Wolfs TF, Bonten MJ. Bacteremic complications of intravascular catheters colonized with Staphylococcus aureus . Clin Infect Dis 2008; 46 (01) 114-118
  • 147 Ruhe JJ, Menon A. Clinical significance of isolated Staphylococcus aureus central venous catheter tip cultures. Clin Microbiol Infect 2006; 12 (09) 933-936
  • 148 Hetem DJ, de Ruiter SC, Buiting AG. , et al. Preventing Staphylococcus aureus bacteremia and sepsis in patients with Staphylococcus aureus colonization of intravascular catheters: a retrospective multicenter study and meta-analysis. Medicine (Baltimore) 2011; 90 (04) 284-288
  • 149 Zafar U, Riederer K, Khatib R, Szpunar S, Sharma M. Relevance of isolating Staphylococcus aureus from intravascular catheters without positive blood culture. J Hosp Infect 2009; 71 (02) 193-195
  • 150 López-Medrano F, Lora-Tamayo J, Fernández-Ruiz M. , et al. Significance of the isolation of Staphylococcus aureus from a central venous catheter tip in the absence of concomitant bacteremia: a clinical approach. Eur J Clin Microbiol Infect Dis 2016; 35 (11) 1865-1869
  • 151 Apisarnthanarak A, Apisarnthanarak P, Warren DK, Fraser VJ. Is central venous catheter tip colonization with Pseudomonas aeruginosa a predictor for subsequent bacteremia?. Clin Infect Dis 2012; 54 (04) 581-583
  • 152 Apisarnthanarak A, Apisarnthanarak P, Warren DK, Fraser VJ. Is central venous catheter tips' colonization with multi-drug resistant Acinetobacter baumannii a predictor for bacteremia?. Clin Infect Dis 2011; 52 (08) 1080-1082
  • 153 van Eck van der Sluijs A, Oosterheert JJ, Ekkelenkamp MB, Hoepelman IM, Peters EJ. Bacteremic complications of intravascular catheter tip colonization with gram-negative micro-organisms in patients without preceding bacteremia. Eur J Clin Microbiol Infect Dis 2012; 31 (06) 1027-1033
  • 154 López-Medrano F, Fernández-Ruiz M, Origüen J. , et al. Clinical significance of Candida colonization of intravascular catheters in the absence of documented candidemia. Diagn Microbiol Infect Dis 2012; 73 (02) 157-161
  • 155 Pérez-Parra A, Muñoz P, Guinea J, Martín-Rabadán P, Guembe M, Bouza E. Is Candida colonization of central vascular catheters in non-candidemic, non-neutropenic patients an indication for antifungals?. Intensive Care Med 2009; 35 (04) 707-712
  • 156 Leenders NH, Oosterheert JJ, Ekkelenkamp MB, De Lange DW, Hoepelman AI, Peters EJ. Candidemic complications in patients with intravascular catheters colonized with Candida species: an indication for preemptive antifungal therapy?. Int J Infect Dis 2011; 15 (07) e453-e458
  • 157 Maraolo AE, Cascella M, Corcione S. , et al. Management of multidrug-resistant Pseudomonas aeruginosa in the intensive care unit: state of the art. Expert Rev Anti Infect Ther 2017; 15 (09) 861-871
  • 158 Akova M, Daikos GL, Tzouvelekis L, Carmeli Y. Interventional strategies and current clinical experience with carbapenemase-producing gram-negative bacteria. Clin Microbiol Infect 2012; 18 (05) 439-448
  • 159 Guenezan J, Drugeon B, Marjanovic N, Mimoz O. Treatment of central line-associated bloodstream infections. Crit Care 2018; 22 (01) 303-308
  • 160 Timsit JF, Azoulay E, Schwebel C. , et al; EMPIRICUS Trial Group. Empirical Micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, Candida colonization, and multiple organ failure: the EMPIRICUS randomized clinical trial. JAMA 2016; 316 (15) 1555-1564
  • 161 Havey TC, Fowler RA, Daneman N. Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care 2011; 15 (06) R267
  • 162 Daneman N, Rishu AH, Xiong W. , et al; Canadian Critical Care Trials Group. Bacteremia Antibiotic Length Actually Needed for Clinical Effectiveness (BALANCE): study protocol for a pilot randomized controlled trial. Trials 2015; 16: 173-177
  • 163 Loubet P, Burdet C, Vindrios W. , et al. Cefazolin versus anti-staphylococcal penicillins for treatment of methicillin-susceptible Staphylococcus aureus bacteraemia: a narrative review. Clin Microbiol Infect 2018; 24 (02) 125-132
  • 164 Fowler Jr VG, Boucher HW, Corey GR. , et al; S. aureus Endocarditis and Bacteremia Study Group. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus . N Engl J Med 2006; 355 (07) 653-665
  • 165 Holland TL, Arnold C, Fowler Jr VG. Clinical management of Staphylococcus aureus bacteremia: a review. JAMA 2014; 312 (13) 1330-1341
  • 166 Hebeisen UP, Atkinson A, Marschall J, Buetti N. Catheter-related bloodstream infections with coagulase-negative staphylococci: are antibiotics necessary if the catheter is removed?. Antimicrob Resist Infect Control 2019; 8: 21-26
  • 167 McHardy IH, Veltman J, Hindler J, Bruxvoort K, Carvalho MM, Humphries RM. Clinical and microbiological aspects of β-lactam resistance in Staphylococcus lugdunensis . J Clin Microbiol 2017; 55 (02) 585-595
  • 168 Agudelo Higuita NI, Huycke MM. Enterococcal disease, epidemiology, and implications for treatment. In: Gilmore MS, Clewell DB, Ike Y, Shankar N. , eds. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston: Massachusetts Eye and Ear Infirmary; 2014
  • 169 Yim J, Smith JR, Rybak MJ. Role of combination antimicrobial therapy for vancomycin-resistant Enterococcus faecium infections: review of the current evidence. Pharmacotherapy 2017; 37 (05) 579-592
  • 170 Pappas PG, Kauffman CA, Andes DR. , et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62 (04) e1-e50
  • 171 Martin-Loeches I, Antonelli M, Cuenca-Estrella M. , et al. ESICM/ESCMID task force on practical management of invasive candidiasis in critically ill patients. Intensive Care Med 2019; 45 (06) 789-805
  • 172 Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37 (03) 840-851 , quiz 859
  • 173 Frank DA, Meuse J, Hirsch D, Ibrahim JG, van den Abbeele AD. The treatment and outcome of cancer patients with thromboses on central venous catheters. J Thromb Thrombolysis 2000; 10 (03) 271-275
  • 174 Rehm SJ, Boucher H, Levine D. , et al. Daptomycin versus vancomycin plus gentamicin for treatment of bacteraemia and endocarditis due to Staphylococcus aureus: subset analysis of patients infected with methicillin-resistant isolates. J Antimicrob Chemother 2008; 62 (06) 1413-1421
  • 175 Lodise TP, Miller CD, Graves J. , et al. Predictors of high vancomycin MIC values among patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 2008; 62 (05) 1138-1141
  • 176 Falagas ME, Vardakas KZ, Athanasiou S. Intravenous heparin in combination with antibiotics for the treatment of deep vein septic thrombophlebitis: a systematic review. Eur J Pharmacol 2007; 557 (2-3): 93-98
  • 177 Wilson Dib R, Chaftari AM, Hachem RY, Yuan Y, Dandachi D, Raad II. Catheter-related Staphylococcus aureus bacteremia and septic thrombosis: the role of anticoagulation therapy and duration of intravenous antibiotic therapy. Open Forum Infect Dis 2018; 5 (10) ofy249