Semin Liver Dis 2020; 40(01): 070-083
DOI: 10.1055/s-0039-1693513
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Noncoding RNA in Liver Regeneration—From Molecular Mechanisms to Clinical Implications

Olga Sergeeva
1   Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
,
Evgeny Sviridov
1   Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
,
Timofei Zatsepin
1   Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
2   Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
› Author Affiliations
Further Information

Publication History

Publication Date:
19 July 2019 (online)

Abstract

The unique ability of the adult liver to regenerate after injury is the basis for efficient surgical resection and liver transplantation and provides solutions for the treatment of liver cancer and acute liver failure. Current success in surgical treatments could be enhanced by directed regulation of liver regeneration. A number of small molecules and growth factors have been tested in mice models to improve liver regeneration. Noncoding ribonucleic acids (ncRNA) are less studied regulators of various cellular processes. Here, the authors carefully review ncRNA involved in liver regeneration and discuss molecular mechanisms and regulatory networks. These ncRNAs modulate the expression of pro- and antiproliferative genes allowing to orchestrate precisely the proliferation of hepatocytes. The authors expect that ncRNA will become new targets in liver regeneration due to recent progress in therapeutic nucleic acids. Among a large number of preclinical studies on ncRNA, only a few entered clinical trials, and further studies are needed to uncover their potential as therapeutic targets.

 
  • References

  • 1 Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65 (04) 1384-1392
  • 2 Kholodenko IV, Yarygin KN. Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. BioMed Res Int 2017; 2017: 8910821
  • 3 Markose D, Kirkland P, Ramachandran P. , et al. Immune cell regulation of liver regeneration and repair. J Immunol Regen Med 2018; 2: 1-10
  • 4 Adolph TE, Grander C, Moschen AR, Tilg H. Liver–microbiome axis in health and disease. Trends Immunol 2018; 39 (09) 712-723
  • 5 Li N, Hua J. Immune cells in liver regeneration. Oncotarget 2017; 8 (02) 3628-3639
  • 6 Liang Q, Liu Z, Zhu C. , et al. Intrahepatic T-cell receptor β immune repertoire is essential for liver regeneration. Hepatology 2018; 68 (05) 1977-1990
  • 7 Williams R, Ashton K, Aspinall R. , et al. Implementation of the lancet standing commission on liver disease in the UK. Lancet 2015; 386 (10008): 2098-2111
  • 8 Cunningham EC, Sharland AF, Bishop GA. Liver transplant tolerance and its application to the clinic: can we exploit the high dose effect?. Clin Dev Immunol 2013; 2013: 419692
  • 9 Dahm F, Georgiev P, Clavien PA. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am J Transplant 2005; 5 (11) 2605-2610
  • 10 Schnitzbauer AA, Lang SA, Goessmann H. , et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg 2012; 255 (03) 405-414
  • 11 Langiewicz M, Graf R, Humar B, Clavien PA. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice. J Hepatol 2018; 69 (03) 666-675
  • 12 Langiewicz M, Schlegel A, Saponara E. , et al. Hedgehog pathway mediates early acceleration of liver regeneration induced by a novel two-staged hepatectomy in mice. J Hepatol 2017; 66 (03) 560-570
  • 13 Cordero-Espinoza L, Huch M. The balancing act of the liver: tissue regeneration versus fibrosis. J Clin Invest 2018; 128 (01) 85-96
  • 14 Onoe T, Tanaka Y, Ide K. , et al. Attenuation of portal hypertension by continuous portal infusion of PGE1 and immunologic impact in adult-to-adult living-donor liver transplantation. Transplantation 2013; 95 (12) 1521-1527
  • 15 Xu X, Man K, Zheng SS. , et al. Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transpl 2006; 12 (04) 621-627
  • 16 Ji Y, Dahmen U, Madrahimov N, Madrahimova F, Xing W, Dirsch O. G-CSF administration in a small-for-size liver model. J Invest Surg 2009; 22 (03) 167-177
  • 17 Okumura S, Teratani T, Fujimoto Y. , et al. Oral administration of polyamines ameliorates liver ischemia/reperfusion injury and promotes liver regeneration in rats. Liver Transpl 2016; 22 (09) 1231-1244
  • 18 Takahashi K, Yan I, Haga H, Patel T. Long noncoding RNA in liver diseases. Hepatology 2014; 60 (02) 744-753
  • 19 Gomes CPC, Spencer H, Ford KL. , et al; Cardiolinc network. The function and therapeutic potential of long non-coding RNAs in cardiovascular development and disease. Mol Ther Nucleic Acids 2017; 8: 494-507
  • 20 Lieberman J. Tapping the RNA world for therapeutics. Nat Struct Mol Biol 2018; 25 (05) 357-364
  • 21 Taub R. Liver regeneration 4: transcriptional control of liver regeneration. FASEB J 1996; 10 (04) 413-427
  • 22 Yokota S, Yoshida O, Ono Y, Geller DA, Thomson AW. Liver transplantation in the mouse: Insights into liver immunobiology, tissue injury, and allograft tolerance. Liver Transpl 2016; 22 (04) 536-546
  • 23 Mitchell C, Willenbring H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc 2008; 3 (07) 1167-1170
  • 24 Lin S, Nascimento EM, Gajera CR. , et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 2018; 556 (7700): 244-248
  • 25 Bangru S, Arif W, Seimetz J. , et al. Alternative splicing rewires Hippo signaling pathway in hepatocytes to promote liver regeneration. Nat Struct Mol Biol 2018; 25 (10) 928-939
  • 26 Alison MR. The many ways to mend your liver: a critical appraisal. Int J Exp Pathol 2018; 99 (03) 106-112
  • 27 Raven A, Lu W-Y, Man TY. , et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 2017; 547 (7663): 350-354
  • 28 Russell JO, Lu WY, Okabe H. , et al. Hepatocyte-specific β-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes. Hepatology 2019; 69 (02) 742-759
  • 29 Schaub JR, Huppert KA, Kurial SNT. , et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 2018; 557 (7704): 247-251
  • 30 Van Haele M, Roskams T. Hepatic progenitor cells: an update. Gastroenterol Clin North Am 2017; 46 (02) 409-420
  • 31 Alison MR, Lin W-R. Regenerating the liver: not so simple after all?. F1000 Res 2016; 5: 1-10
  • 32 Tyczewska M, Rucinski M, Ziolkowska A. , et al. Enucleation-induced rat adrenal gland regeneration: expression profile of selected genes involved in control of adrenocortical cell proliferation. Int J Endocrinol 2014; 2014: 130359
  • 33 Fausto N. Liver regeneration. J Hepatol 2000; 32 (1, Suppl): 19-31
  • 34 Akerman P, Cote P, Yang SQ. , et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol 1992; 263 (4 Pt 1): G579-G585
  • 35 Webber EM, Bruix J, Pierce RH, Fausto N. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology 1998; 28 (05) 1226-1234
  • 36 Tao Y, Wang M, Chen E, Tang H. Liver regeneration: analysis of the main relevant signaling molecules. Mediators Inflamm 2017; 2017: 4256352
  • 37 Liu Y, Michalopoulos GK, Zarnegar R. Structural and functional characterization of the mouse hepatocyte growth factor gene promoter. J Biol Chem 1994; 269 (06) 4152-4160
  • 38 Kariv R, Enden A, Zvibel I. , et al. Triiodothyronine and interleukin-6 (IL-6) induce expression of HGF in an immortalized rat hepatic stellate cell line. Liver Int 2003; 23 (03) 187-193
  • 39 Mitchell C, Gilgenkrantz H. Transcriptional profiling of liver regeneration: new approaches to an old trick!. J Hepatol 2003; 38 (06) 847-849
  • 40 Nakamura T, Nishizawa T, Hagiya M. , et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342 (6248): 440-443
  • 41 Wang X, DeFrances MC, Dai Y. , et al. A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Mol Cell 2002; 9 (02) 411-421
  • 42 McGowan JA, Strain AJ, Bucher NL. DNA synthesis in primary cultures of adult rat hepatocytes in a defined medium: effects of epidermal growth factor, insulin, glucagon, and cyclic-AMP. J Cell Physiol 1981; 108 (03) 353-363
  • 43 Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 2001; 33 (05) 1098-1109
  • 44 Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol 2010; 176 (01) 2-13
  • 45 Hong F, Nguyen VA, Shen X, Kunos G, Gao B. Rapid activation of protein kinase B/Akt has a key role in antiapoptotic signaling during liver regeneration. Biochem Biophys Res Commun 2000; 279 (03) 974-979
  • 46 Olsen PS, Poulsen SS, Kirkegaard P. Adrenergic effects on secretion of epidermal growth factor from Brunner's glands. Gut 1985; 26 (09) 920-927
  • 47 Mitchell C, Nivison M, Jackson LF. , et al. Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle progression during liver regeneration. J Biol Chem 2005; 280 (04) 2562-2568
  • 48 Gupta P, Venugopal SK. Augmenter of liver regeneration: a key protein in liver regeneration and pathophysiology. Hepatol Res 2018; 48 (08) 587-596
  • 49 Fukuhara Y, Hirasawa A, Li XK. , et al. Gene expression profile in the regenerating rat liver after partial hepatectomy. J Hepatol 2003; 38 (06) 784-792
  • 50 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425 (6958): 577-584
  • 51 Nygård IE, Mortensen KE, Hedegaard J. , et al. The genetic regulation of the terminating phase of liver regeneration. Comp Hepatol 2012; 11 (01) 3
  • 52 Zou Y, Bao Q, Kumar S, Hu M, Wang G-Y, Dai G. Four waves of hepatocyte proliferation linked with three waves of hepatic fat accumulation during partial hepatectomy-induced liver regeneration. PLoS One 2012; 7 (02) e30675
  • 53 Qu Z, Adelson DL. Evolutionary conservation and functional roles of ncRNA. Front Genet 2012; 3: 205
  • 54 van Solingen C, Scacalossi KR, Moore KJ. Long noncoding RNAs in lipid metabolism. Curr Opin Lipidol 2018; 29 (03) 224-232
  • 55 Beltrán-Anaya FO, Cedro-Tanda A, Hidalgo-Miranda A, Romero-Cordoba SL. Insights into the regulatory role of non-coding RNAs in cancer metabolism. Front Physiol 2016; 7: 342
  • 56 Frías-Lasserre D, Villagra CA. The importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front Microbiol 2017; 8: 2483
  • 57 Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006; 15 (Spec No 1): R17-R29
  • 58 Yoo AS, Greenwald I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 2005; 310 (5752): 1330-1333
  • 59 Lu Y, Thomson JM, Wong HYF, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007; 310 (02) 442-453
  • 60 Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 2008; 40 (12) 1478-1483
  • 61 Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U S A 2011; 108 (52) 21075-21080
  • 62 He L, He X, Lim LP. , et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447 (7148): 1130-1134
  • 63 Melamed Z, Levy A, Ashwal-Fluss R. , et al. Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions. Mol Cell 2013; 50 (06) 869-881
  • 64 Axtell MJ, Westholm JO, Lai EC. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 2011; 12 (04) 221
  • 65 Derrien T, Johnson R, Bussotti G. , et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22 (09) 1775-1789
  • 66 Liu SJ, Lim DA. Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep 2018; 19 (12) e46955
  • 67 Allen TA, Von Kaenel S, Goodrich JA, Kugel JF. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 2004; 11 (09) 816-821
  • 68 Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 2012; 13 (10) 175
  • 69 Meier UT. Pseudouridylation goes regulatory. EMBO J 2011; 30 (01) 3-4
  • 70 Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell 2017; 169 (07) 1187-1200
  • 71 Dominissini D, Moshitch-Moshkovitz S, Schwartz S. , et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485 (7397): 201-206
  • 72 Romano G, Veneziano D, Nigita G, Nana-Sinkam SP. RNA Methylation in ncRNA: classes, detection, and molecular associations. Front Genet 2018; 9: 243
  • 73 Zhou KI, Parisien M, Dai Q. , et al. N(6)-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J Mol Biol 2016; 428 (5 Pt A): 822-833
  • 74 Zhong X, Yu J, Frazier K. , et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation. Cell Reports 2018; 25 (07) 1816-1828.e4
  • 75 Kang H, Zhang Z, Yu L, Li Y, Liang M, Zhou L. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation. J Cell Biochem 2018; 119 (07) 5676-5685
  • 76 Zhao F. Dysregulated epigenetic modifications in the pathogenesis of NAFLD-HCC. Adv Exp Med Biol 2018; 1061: 79-93
  • 77 Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 2015; 519 (7544): 482-485
  • 78 Ji L, Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res 2012; 22 (04) 624-636
  • 79 Lewis CJT, Pan T, Kalsotra A. RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol 2017; 18 (03) 202-210
  • 80 Squires JE, Patel HR, Nousch M. , et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 2012; 40 (11) 5023-5033
  • 81 Jacob R, Zander S, Gutschner T. The dark side of the epitranscriptome: chemical modifications in long non-coding RNAs. Int J Mol Sci 2017; 18 (11) 1-29
  • 82 Ulitsky I. Interactions between short and long noncoding RNAs. FEBS Lett 2018; 592 (17) 2874-2883
  • 83 Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci 2018; 75 (03) 467-484
  • 84 Chen X, Zhao Y, Wang F, Bei Y, Xiao J, Yang C. MicroRNAs in liver regeneration. Cell Physiol Biochem 2015; 37 (02) 615-628
  • 85 Shu J, Kren BT, Xia Z. , et al. Genomewide microRNA down-regulation as a negative feedback mechanism in the early phases of liver regeneration. Hepatology 2011; 54 (02) 609-619
  • 86 Song G, Sharma AD, Roll GR. , et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology 2010; 51 (05) 1735-1743
  • 87 Chen X, Song M, Chen W. , et al. MicroRNA-21 contributes to liver regeneration by targeting PTEN. Med Sci Monit 2016; 22: 83-91
  • 88 Chen H, Sun Y, Dong R. , et al. Mir-34a is upregulated during liver regeneration in rats and is associated with the suppression of hepatocyte proliferation. PLoS One 2011; 6 (05) e20238
  • 89 Wang X-P, Zhou J, Han M. , et al. MicroRNA-34a regulates liver regeneration and the development of liver cancer in rats by targeting Notch signaling pathway. Oncotarget 2017; 8 (08) 13264-13276
  • 90 Raschzok N, Sallmon H, Dame C, Sauer IM. Liver regeneration after partial hepatectomy: inconsistent results of expression screenings for human, mouse, and rat microRNAs. Am J Physiol Gastrointest Liver Physiol 2012; 302 (04) G470-G471
  • 91 Castro RE, Ferreira DMS, Zhang X. , et al. Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid. Am J Physiol Gastrointest Liver Physiol 2010; 299 (04) G887-G897
  • 92 Rogler CE, Levoci L, Ader T. , et al. MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 2009; 50 (02) 575-584
  • 93 Yuan B, Dong R, Shi D. , et al. Down-regulation of miR-23b may contribute to activation of the TGF-β1/Smad3 signalling pathway during the termination stage of liver regeneration. FEBS Lett 2011; 585 (06) 927-934
  • 94 Salehi S, Brereton HC, Arno MJ. , et al. Human liver regeneration is characterized by the coordinated expression of distinct microRNA governing cell cycle fate. Am J Transplant 2013; 13 (05) 1282-1295
  • 95 Liu Q, Fu H, Sun F. , et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 2008; 36 (16) 5391-5404
  • 96 Zhou J, Ju W, Wang D. , et al. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS One 2012; 7 (04) e33577
  • 97 Doddapaneni R, Chawla YK, Das A, Kalra JK, Ghosh S, Chakraborti A. Overexpression of microRNA-122 enhances in vitro hepatic differentiation of fetal liver-derived stem/progenitor cells. J Cell Biochem 2013; 114 (07) 1575-1583
  • 98 Yuan Q, Loya K, Rani B. , et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology 2013; 57 (01) 299-310
  • 99 Chen X, Murad M, Cui Y-Y. , et al. miRNA regulation of liver growth after 50% partial hepatectomy and small size grafts in rats. Transplantation 2011; 91 (03) 293-299
  • 100 Jung KH, McCarthy RL, Zhou C, Uprety N, Barton MC, Beretta L. MicroRNA regulates hepatocytic differentiation of progenitor cells by targeting YAP1. Stem Cells 2016; 34 (05) 1284-1296
  • 101 Pan C, Chen H, Wang L. , et al. Down-regulation of MiR-127 facilitates hepatocyte proliferation during rat liver regeneration. PLoS One 2012; 7 (06) e39151
  • 102 Tsai WC, Hsu SD, Hsu CS. , et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122 (08) 2884-2897
  • 103 Chen X-B, Zheng X-B, Cai Z-X, Lin XJ, Xu MQ. MicroRNA-203 promotes liver regeneration after partial hepatectomy in cirrhotic rats. J Surg Res 2017; 211: 53-63
  • 104 Lu T, Hao J, Shen C, Gu G, Zhang J, Xu N. Partial hepatectomy-induced upregulation of miR-1907 accelerates liver regeneration by activation autophagy. BioMed Res Int 2018; 2018: 3817057
  • 105 Polioudakis D, Abell NS, Iyer VR. miR-503 represses human cell proliferation and directly targets the oncogene DDHD2 by non-canonical target pairing. BMC Genomics 2015; 16: 40
  • 106 Bei Y, Song Y, Wang F. , et al. miR-382 targeting PTEN-Akt axis promotes liver regeneration. Oncotarget 2016; 7 (02) 1584-1597
  • 107 Zheng Y, Zhou J, Li X. , et al. Mir-382 promotes differentiation of rat liver progenitor cell WB-F344 by targeting Ezh2. Cell Physiol Biochem 2018; 48 (06) 2389-2398
  • 108 Lin X, Chen L, Li H. , et al. miR-155 accelerates proliferation of mouse hepatocytes during liver regeneration by directly targeting SOCS1. Am J Physiol Gastrointest Liver Physiol 2018; 315 (04) G443-G453
  • 109 Capri M, Olivieri F, Lanzarini C. , et al. Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell 2017; 16 (02) 262-272
  • 110 Tili E, Michaille J-J, Adair B. , et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 2010; 31 (09) 1561-1566
  • 111 Song B, Wang C, Liu J. , et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res 2010; 29: 29
  • 112 Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 2012; 122 (03) 1097-1108
  • 113 Yan-nan B, Zhao-yan Y, Li-xi L, jiang Y, Qing-jie X, Yong Z. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN. Biochem Biophys Res Commun 2014; 443 (03) 802-807
  • 114 Kim J, Hyun J, Wang S, Lee C, Jung Y. MicroRNA-378 is involved in hedgehog-driven epithelial-to-mesenchymal transition in hepatocytes of regenerating liver. Cell Death Dis 2018; 9 (07) 721
  • 115 Cirera-Salinas D, Pauta M, Allen RM. , et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012; 11 (05) 922-933
  • 116 Yu Z-Y, Bai Y-N, Luo L-X, Wu H, Zeng Y. Expression of microRNA-150 targeting vascular endothelial growth factor-A is downregulated under hypoxia during liver regeneration. Mol Med Rep 2013; 8 (01) 287-293
  • 117 Wei R, Yang J, Liu G-Q. , et al. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 2013; 518 (02) 246-255
  • 118 Khosravi M, Azarpira N, Shamdani S, Hojjat-Assari S, Naserian S, Karimi MH. Differentiation of umbilical cord derived mesenchymal stem cells to hepatocyte cells by transfection of miR-106a, miR-574-3p, and miR-451. Gene 2018; 667: 1-9
  • 119 Demarez C, Gérard C, Cordi S. , et al. MicroRNA-337-3p controls hepatobiliary gene expression and transcriptional dynamics during hepatic cell differentiation. Hepatology 2018; 67 (01) 313-327
  • 120 Laudadio I, Manfroid I, Achouri Y. , et al. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation. Gastroenterology 2012; 142 (01) 119-129
  • 121 Li J, Jin W, Qin Y, Zhao W, Chang C, Xu C. Expression profile and function analysis of lncRNAs during priming phase of rat liver regeneration. PLoS One 2016; 11 (06) e0156128
  • 122 Huang L, Damle SS, Booten S. , et al. Partial hepatectomy induced long noncoding RNA inhibits hepatocyte proliferation during liver regeneration. PLoS One 2015; 10 (07) e0132798
  • 123 Xu D, Yang F, Yuan JH. , et al. Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/β-catenin signaling. Hepatology 2013; 58 (02) 739-751
  • 124 Wang Y, Zhu P, Wang J. , et al. Long noncoding RNA lncHand2 promotes liver repopulation via c-Met signaling. J Hepatol 2018; 69 (04) 861-872
  • 125 Yamamoto Y, Nishikawa Y, Tokairin T, Omori Y, Enomoto K. Increased expression of H19 non-coding mRNA follows hepatocyte proliferation in the rat and mouse. J Hepatol 2004; 40 (05) 808-814
  • 126 Runge S, Nielsen FC, Nielsen J, Lykke-Andersen J, Wewer UM, Christiansen J. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein. J Biol Chem 2000; 275 (38) 29562-29569
  • 127 Pope C, Mishra S, Russell J, Zhou Q, Zhong XB. Targeting H19, an imprinted long non-coding RNA, in hepatic functions and liver diseases. Diseases 2017; 5 (01) 11
  • 128 Hajjari M, Jahani MM. H19: a long non-coding RNA with different roles in cancer progression. Gene Ther Mol Biol 2014; 16: 172-181
  • 129 Wang S, Wu X, Liu Y. , et al. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett 2016; 590 (04) 559-570
  • 130 Song Y, Liu C, Liu X. , et al. H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology 2017; 66 (04) 1183-1196
  • 131 Li X, Liu R, Huang Z. , et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology 2018; 68 (02) 599-615
  • 132 Li X, Liu R, Yang J. , et al. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice. Hepatology 2017; 66 (03) 869-884
  • 133 Jiang Y, Huang Y, Cai S. , et al. H19 is expressed in hybrid hepatocyte nuclear factor 4α+ periportal hepatocytes but not Cytokeratin 19+ cholangiocytes in cholestatic livers. Hepatol Commun 2018; 2 (11) 1356-1368
  • 134 Li Z-X, Zhu Q-N, Zhang H-B, Hu Y, Wang G, Zhu Y-S. MALAT1: a potential biomarker in cancer. Cancer Manag Res 2018; 10: 6757-6768
  • 135 Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer 2017; 140 (09) 1955-1967
  • 136 Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med 2017; 39 (02) 347-356
  • 137 Chen R, Liu Y, Zhuang H. , et al. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Res 2017; 45 (17) 9947-9959
  • 138 Wu Y, Liu X, Zhou Q. , et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicol Appl Pharmacol 2015; 289 (02) 163-176
  • 139 Sato K, Meng F, Glaser S, Alpini G. Exosomes in liver pathology. J Hepatol 2016; 65 (01) 213-221
  • 140 Nojima H, Freeman CM, Schuster RM. , et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol 2016; 64 (01) 60-68
  • 141 Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol 2017; 14 (08) 455-466
  • 142 Bala S, Petrasek J, Mundkur S. , et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 2012; 56 (05) 1946-1957
  • 143 John K, Hadem J, Krech T. , et al. MicroRNAs play a role in spontaneous recovery from acute liver failure. Hepatology 2014; 60 (04) 1346-1355
  • 144 Starkey Lewis PJ, Dear J, Platt V. , et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 2011; 54 (05) 1767-1776
  • 145 Yan IK, Wang X, Asmann YW, Haga H, Patel T. Circulating extracellular RNA markers of liver regeneration. PLoS One 2016; 11 (07) e0155888
  • 146 Farid WRR, Pan Q, van der Meer AJP. , et al. Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation. Liver Transpl 2012; 18 (03) 290-297
  • 147 Chen Z, Luo Y, Yang W. , et al. Comparison analysis of dysregulated lncRNA profile in mouse plasma and liver after hepatic ischemia/reperfusion injury. PLoS One 2015; 10 (07) e0133462
  • 148 Starlinger P, Hackl H, Pereyra D. , et al. Predicting postoperative liver dysfunction based on blood-derived microRNA signatures. Hepatology 2019; 69 (06) 2636-2651
  • 149 Khvorova A. Oligonucleotide therapeutics - a new class of cholesterol-lowering drugs. N Engl J Med 2017; 376 (01) 4-7
  • 150 Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell Metab 2018; 27 (04) 714-739
  • 151 Smith CIE, Zain R. Therapeutic oligonucleotides: state of the art. Annu Rev Pharmacol Toxicol 2019; 59: 605-630
  • 152 MacLeod AR, Crooke ST. RNA therapeutics in oncology: advances, challenges, and future directions. J Clin Pharmacol 2017; 57 (Suppl. 10) S43-S59
  • 153 Chery J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 2016; 4 (07) 35-50
  • 154 Xie J, Burt DR, Gao G. AAV-mediated miRNA delivery and therapeutics. Semin Liver Dis 2015; 35: 81-88
  • 155 Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44 (14) 6518-6548
  • 156 Nair JK, Willoughby JL, Chan A. , et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 2014; 136 (49) 16958-16961
  • 157 Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated oligonucleotides: recent developments and therapeutic applications. Bioconjug Chem 2019; 30 (02) 366-383
  • 158 Huang Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol Ther Nucleic Acids 2017; 6: 116-132
  • 159 Stojic L, Lun ATL, Mangei J. , et al. Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Res 2018; 46 (12) 5950-5966
  • 160 Miroshnichenko SK, Patutina OA, Burakova EA. , et al. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci U S A 2019; 116 (04) 1229-1234
  • 161 Krützfeldt J, Rajewsky N, Braich R. , et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438 (7068): 685-689
  • 162 Gebert LFR, Rebhan MAE, Crivelli SEM, Denzler R, Stoffel M, Hall J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 2014; 42 (01) 609-621
  • 163 Janssen HL, Reesink HW, Lawitz EJ. , et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18) 1685-1694
  • 164 van der Ree MH, van der Meer AJ, van Nuenen AC. , et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther 2016; 43 (01) 102-113
  • 165 Szabo G, Sarnow P, Bala S. MicroRNA silencing and the development of novel therapies for liver disease. J Hepatol 2012; 57 (02) 462-466
  • 166 Kasinski AL, Slack FJ. Arresting the culprit: targeted antagomir delivery to sequester oncogenic miR-221 in HCC. Mol Ther Nucleic Acids 2012; 1: e12
  • 167 Herrera VL, Colby AH, Ruiz-Opazo N, Coleman DG, Grinstaff MW. Nucleic acid nanomedicines in Phase II/III clinical trials: translation of nucleic acid therapies for reprogramming cells. Nanomedicine (Lond) 2018; 13 (16) 2083-2098
  • 168 Rech M, Kuhn AR, Lumens J. , et al. AntagomiR-103 and -107 treatment affects cardiac function and metabolism. Mol Ther Nucleic Acids 2019; 14: 424-437
  • 169 Swayze EE, Siwkowski AM, Wancewicz EV. , et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 2007; 35 (02) 687-700
  • 170 Valdmanis PN, Kim HK, Chu K. , et al. miR-122 removal in the liver activates imprinted microRNAs and enables more effective microRNA-mediated gene repression. Nat Commun 2018; 9 (01) 5321
  • 171 Caviglia JM, Yan J, Jang MK. , et al. MicroRNA-21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis. Hepatology 2018; 67 (06) 2414-2429
  • 172 Loyer X, Paradis V, Hénique C. , et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut 2016; 65 (11) 1882-1894
  • 173 Szkolnicka D, Lucendo-Villarin B, Moore JK, Simpson KJ, Forbes SJ, Hay DC. Reducing hepatocyte injury and necrosis in response to paracetamol using noncoding RNAs. Stem Cells Transl Med 2016; 5 (06) 764-772
  • 174 Daige C, Priddy L, Wiggins J. , et al. MRX34, a liposomal miR-34 mimic and potential first-in-class microRNA therapeutic: activity in animal models of liver cancer. J Clin Oncol 2016; 34: e14076
  • 175 Yang D, Yuan Q, Balakrishnan A. , et al. MicroRNA-125b-5p mimic inhibits acute liver failure. Nat Commun 2016; 7: 11916
  • 176 Thakral S, Ghoshal K. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr Gene Ther 2015; 15 (02) 142-150
  • 177 Okada H, Honda M, Campbell JS. , et al. Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice. Cancer Sci 2015; 106 (09) 1143-1152
  • 178 Cui L, Shi Y, Zhou X. , et al. A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes. Cell Death Dis 2013; 4: e918
  • 179 Eguchi T, Kuboki T. Cellular reprogramming using defined factors and microRNAs. Stem Cells Int 2016; 2016: 7530942
  • 180 Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 2016; 44 (02) 863-877
  • 181 Prakash TP, Graham MJ, Yu J. , et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res 2014; 42 (13) 8796-8807
  • 182 Miller CM, Tanowitz M, Donner AJ. , et al. Receptor-mediated uptake of phosphorothioate antisense oligonucleotides in different cell types of the liver. Nucleic Acid Ther 2018; 28 (03) 119-127
  • 183 Janas MM, Schlegel MK, Harbison CE. , et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat Commun 2018; 9 (01) 723
  • 184 Tanowitz M, Hettrick L, Revenko A, Kinberger GA, Prakash TP, Seth PP. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res 2017; 45 (21) 12388-12400
  • 185 Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 2015; 87: 46-51
  • 186 Novobrantseva TI, Borodovsky A, Wong J. , et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol Ther Nucleic Acids 2012; 1: e4
  • 187 Love KT, Mahon KP, Levins CG. , et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A 2010; 107 (05) 1864-1869
  • 188 Jiménez Calvente C, Sehgal A, Popov Y. , et al. Specific hepatic delivery of procollagen α1(I) small interfering RNA in lipid-like nanoparticles resolves liver fibrosis. Hepatology 2015; 62 (04) 1285-1297
  • 189 Shobaki N, Sato Y, Harashima H. Mixing lipids to manipulate the ionization status of lipid nanoparticles for specific tissue targeting. Int J Nanomedicine 2018; 13: 8395-8410
  • 190 Bogorad RL, Yin H, Zeigerer A. , et al. Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. Nat Commun 2014; 5: 3869
  • 191 Disney MD. Targeting RNA with small molecules to capture opportunities at the intersection of chemistry, biology, and medicine. J Am Chem Soc 2019; 141 (17) 6776-6790
  • 192 Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A. Small-molecule inhibitors of microRNA miR-21 function. Angew Chem Int Ed Engl 2008; 47 (39) 7482-7484
  • 193 Naro Y, Thomas M, Stephens MD, Connelly CM, Deiters A. Aryl amide small-molecule inhibitors of microRNA miR-21 function. Bioorg Med Chem Lett 2015; 25 (21) 4793-4796
  • 194 Donlic A, Morgan BS, Xu JL, Liu A, Roble Jr C, Hargrove AE. Discovery of small molecule ligands for MALAT1 by tuning an RNA-binding scaffold. Angew Chem Int Ed Engl 2018; 57 (40) 13242-13247
  • 195 Abulwerdi FA, Xu W, Ageeli AA. , et al. Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS Chem Biol 2019; 14 (02) 223-235
  • 196 Pibiri M. Liver regeneration in aged mice: new insights. Aging (Albany NY) 2018; 10 (08) 1801-1824
  • 197 White RR, Milholland B, MacRae SL, Lin M, Zheng D, Vijg J. Comprehensive transcriptional landscape of aging mouse liver. BMC Genomics 2015; 16: 899
  • 198 Bacalini MG, Franceschi C, Gentilini D. , et al. Molecular aging of human liver: an epigenetic/transcriptomic signature. J Gerontol A Biol Sci Med Sci 2019; 74 (01) 1-8
  • 199 Morsiani C, Bacalini MG, Santoro A. , et al. The peculiar aging of human liver: a geroscience perspective within transplant context. Ageing Res Rev 2019; 51: 24-34
  • 200 Segal JM, Wesche DJ, Serra MP. , et al. Single-cell analysis identifies EpCAM+/CDH6+/TROP-2 cells as human liver progenitors. bioRxiv. Doi: 10.1101/294272
  • 201 Wang AW, Wangensteen KJ, Wang YJ. , et al. TRAP-seq identifies cystine/glutamate antiporter as a driver of recovery from liver injury. J Clin Invest 2018; 128 (06) 2297-2309
  • 202 MacParland SA, Liu JC, Ma XZ. , et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun 2018; 9 (01) 4383
  • 203 Zhou JN, Zeng Q, Wang HY. , et al. MicroRNA-125b attenuates epithelial-mesenchymal transitions and targets stem-like liver cancer cells through small mothers against decapentaplegic 2 and 4. Hepatology 2015; 62 (03) 801-815
  • 204 Ji J, Tang J, Deng L. , et al. LINC00152 promotes proliferation in hepatocellular carcinoma by targeting EpCAM via the mTOR signaling pathway. Oncotarget 2015; 6 (40) 42813-42824
  • 205 Lv H, Lv G, Han Q, Yang W, Wang H. Noncoding RNAs in liver cancer stem cells: the big impact of little things. Cancer Lett 2018; 418: 51-63
  • 206 Liu WH, Tao KS, You N, Liu ZC, Zhang HT, Dou KF. Differences in the properties and mirna expression profiles between side populations from hepatic cancer cells and normal liver cells. PLoS One 2011; 6 (08) e23311
  • 207 Hajarnis SS, Patel V, Aboudehen K. , et al. Transcription factor hepatocyte nuclear factor-1β (HNF-1β) regulates microrna-200 expression through a long noncoding RNA. J Biol Chem 2015; 290 (41) 24793-24805
  • 208 Kitade M, Factor VM, Andersen JB. , et al. Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev 2013; 27 (15) 1706-1717
  • 209 Lam J, van den Bosch M, Wegrzyn J. , et al. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun 2018; 9: 1-14
  • 210 Lu J, Zhou Y, Hu T. , et al. Notch signaling coordinates progenitor cell-mediated biliary regeneration following partial hepatectomy. Sci Rep 2016; 6: 22754
  • 211 Yang W, Yan H-X, Chen L. , et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 2008; 68 (11) 4287-4295
  • 212 Hu X-Y, Hou P-F, Li T-T. , et al. The roles of Wnt/β-catenin signaling pathway related lncRNAs in cancer. Int J Biol Sci 2018; 14 (14) 2003-2011