Semin Thromb Hemost 2020; 46(05): 524-544
DOI: 10.1055/s-0039-1692395
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Vascular Nanomedicine: Current Status, Opportunities, and Challenges

Michael Sun
1   Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
,
Anirban Sen Gupta
1   Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
› Author Affiliations
Further Information

Publication History

Publication Date:
14 June 2019 (online)

Abstract

The term “nanotechnology” was coined by Norio Taniguchi in the 1970s to describe the manipulation of materials at the nano (10−9) scale, and the term “nanomedicine” was put forward by Eric Drexler and Robert Freitas Jr. in the 1990s to signify the application of nanotechnology in medicine. Nanomedicine encompasses a variety of systems including nanoparticles, nanofibers, surface nano-patterning, nanoporous matrices, and nanoscale coatings. Of these, nanoparticle-based applications in drug formulations and delivery have emerged as the most utilized nanomedicine system. This review aims to present a comprehensive assessment of nanomedicine approaches in vascular diseases, emphasizing particle designs, therapeutic effects, and current state-of-the-art. The expected advantages of utilizing nanoparticles for drug delivery stem from the particle's ability to (1) protect the drug from plasma-induced deactivation; (2) optimize drug pharmacokinetics and biodistribution; (3) enhance drug delivery to the disease site via passive and active mechanisms; (4) modulate drug release mechanisms via diffusion, degradation, and other unique stimuli-triggered processes; and (5) biodegrade or get eliminated safely from the body. Several nanoparticle systems encapsulating a variety of payloads have shown these advantages in vascular drug delivery applications in preclinical evaluation. At the same time, new challenges have emerged regarding discrepancy between expected and actual fate of nanoparticles in vivo, manufacturing barriers of complex nanoparticle designs, and issues of toxicity and immune response, which have limited successful clinical translation of vascular nanomedicine systems. In this context, this review will discuss challenges and opportunities to advance the field of vascular nanomedicine.

 
  • References

  • 1 Heart Disease Facts. Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/heartdisease/facts.htm . Accessed November 2, 2018
  • 2 Cardiovascular Disease. World Health Organization. Available at: http://www.who.int/cardiovascular_diseases/en/ . Accessed November 2, 2018
  • 3 Benjamin EJ, Virani SS, Callaway CW. , et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2018 Update: a report from the American Heart Association. Circulation 2018; 137 (12) e67-e492
  • 4 Phillips DR, Conley PB, Sinha U, Andre P. Therapeutic approaches in arterial thrombosis. J Thromb Haemost 2005; 3 (08) 1577-1589
  • 5 Gurbel PA, Serebruany VL. Oral platelet IIb/IIIa inhibitors: from attractive theory to clinical failures. J Thromb Thrombolysis 2000; 10 (03) 217-220
  • 6 Marzilli M. From the experimental myocardial infarction to the clinical acute myocardial infarction: limitations of thrombolytic therapy. Int J Cardiol 1995; 49 (Suppl): S71-S75
  • 7 Greineder CF, Howard MD, Carnemolla R, Cines DB, Muzykantov VR. Advanced drug delivery systems for antithrombotic agents. Blood 2013; 122 (09) 1565-1575
  • 8 Rebeiz AG, Granger CB, Simoons ML. Incidence and management of complications of fibrinolytic, antiplatelet, and anticoagulant therapy. Fundamental and Clinical Cardiology 2005; 52: 375-395
  • 9 Wessely R. New drug-eluting stent concepts. Nat Rev Cardiol 2010; 7 (04) 194-203
  • 10 Puranik AS, Dawson ER, Peppas NA. Recent advances in drug eluting stents. Int J Pharm 2013; 441 (1-2): 665-679
  • 11 Stefanini GG, Holmes Jr DR. Drug-eluting coronary-artery stents. N Engl J Med 2013; 368 (03) 254-265
  • 12 Brieger D, Topol E. Local drug delivery systems and prevention of restenosis. Cardiovasc Res 1997; 35 (03) 405-413
  • 13 Eccleston DS, Lincoff AM. Catheter-based drug delivery for restenosis. Adv Drug Deliv Rev 1997; 24: 31-43
  • 14 Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet 2003; 361 (9353): 247-249
  • 15 Torchilin VP. Targeting of drugs and drug carriers within the cardiovascular system. Adv Drug Deliv Rev 1995; 17: 75-101
  • 16 Lanza GM, Marsh JN, Hu G. , et al. Rationale for a nanomedicine approach to thrombolytic therapy. Stroke 2010; 41 (10, Suppl): S42-S44
  • 17 Feynman RP. There's plenty of room at the bottom. Transcript of talk given on Dec 29, 1959 to the American Physical Society. Available at: http://calteches.library.caltech.edu/1976/1/1960Bottom.pdf . Accessed April 2, 2019
  • 18 Taniguchi N. On the basic concept of ‘nano-technology’. Proceedings of the International Conference on Production Engineering Tokyo, Part II, Japan Society of Precision Engineering; 1974: 5-10
  • 19 Freitas Jr RA. Nanomedicine, Volume I: Basic Capabilities. Austin, TX: Landes Biosciences; 1999
  • 20 Drexler KE. Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York, NY: John Wiley & Sons, Inc; 1992
  • 21 Zolot RS, Basu S, Million RP. Antibody-drug conjugates. Nat Rev Drug Discov 2013; 12 (04) 259-260
  • 22 Wang X, Palasubramaniam J, Gkanatsas Y. , et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 2014; 114 (07) 1083-1093
  • 23 Dong N, Da Cunha V, Citkowicz A. , et al. P-selectin-targeting of the fibrin selective thrombolytic Desmodus rotundus salivary plasminogen activator alpha1. Thromb Haemost 2004; 92 (05) 956-965
  • 24 Diamond SL. Engineering design of optimal strategies for blood clot dissolution. Annu Rev Biomed Eng 1999; 1: 427-462
  • 25 Thomas AC, Campbell JH. Targeted delivery of heparin and LMWH using a fibrin antibody prevents restenosis. Atherosclerosis 2004; 176 (01) 73-81
  • 26 Gupta AS. Nanomedicine approaches in vascular disease: a review. Nanomedicine (Lond) 2011; 7 (06) 763-779
  • 27 Watson SP. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr Pharm Des 2009; 15 (12) 1358-1372
  • 28 Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 2014; 15 (12) 771-785
  • 29 Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454 (03) 345-359
  • 30 Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 2014; 69 (07) 777-784
  • 31 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340 (02) 115-126
  • 32 Lusis AJ. Atherosclerosis. Nature 2000; 407 (6801): 233-241
  • 33 Libby P. Inflammation in atherosclerosis. Nature 2002; 420 (6917): 868-874
  • 34 Massberg S, Brand K, Grüner S. , et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196 (07) 887-896
  • 35 Weyrich AS, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J Thromb Haemost 2003; 1 (09) 1897-1905
  • 36 Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol 2003; 23 (12) 2131-2137
  • 37 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
  • 38 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8 (11) 1227-1234
  • 39 Frenette PS, Denis CV, Weiss L. , et al. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med 2000; 191 (08) 1413-1422
  • 40 André P. P-selectin in haemostasis. Br J Haematol 2004; 126 (03) 298-306
  • 41 Byzova TV, Plow EF. Networking in the hemostatic system. Integrin alphaIIbbeta3 binds prothrombin and influences its activation. J Biol Chem 1997; 272 (43) 27183-27188
  • 42 Cierniewski CS, Byzova T, Papierak M. , et al. Peptide ligands can bind to distinct sites in integrin alphaIIbbeta3 and elicit different functional responses. J Biol Chem 1999; 274 (24) 16923-16932
  • 43 Deckmyn H, Ulrichts H, Van de Walle G. , et al. Platelet antigens and their functions. Vox Sang 2002; 87: S105-S111
  • 44 Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp--specific adhesion receptors. Science 1986; 231 (4745): 1559-1562
  • 45 D'Souza SE, Ginsberg MH, Matsueda GR, Plow EF. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature 1991; 350 (6313): 66-68
  • 46 Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 2000; 96 (13) 4216-4221
  • 47 Stouffer GA, Pathak A, Zhao R, Huang J. Down but not out: new insights into the role of alphaVbeta3 integrins in vascular healing. Arterioscler Thromb Vasc Biol 2005; 25 (07) 1309-1310
  • 48 Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 1998; 187 (03) 329-339
  • 49 Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 2005; 46 (06) 937-954
  • 50 Mastenbroek TG, van Geffen JP, Heemskerk JW, Cosemans JM. Acute and persistent platelet and coagulant activities in atherothrombosis. J Thromb Haemost 2015; 13 (Suppl. 01) S272-S280
  • 51 Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007; 21 (02) 99-111
  • 52 Totani L, Evangelista V. Platelet-leukocyte interactions in cardiovascular disease and beyond. Arterioscler Thromb Vasc Biol 2010; 30 (12) 2357-2361
  • 53 von Brühl M-L, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 54 Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72 (14) 2627-2643
  • 55 Wolberg AS, Rosendaal FR, Weitz JI. , et al. Venous thrombosis. Nat Rev Dis Primers 2015; 1: 15006
  • 56 Gould TJ, Vu TT, Swystun LL. , et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984
  • 57 Sørensen OE, Borregaard N. Neutrophil extracellular traps - the dark side of neutrophils. J Clin Invest 2016; 126 (05) 1612-1620
  • 58 Dyer MR, Chen Q, Haldeman S. , et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep 2018; 8 (01) 2068
  • 59 Ringsdorf H. Structure and properties of pharmacologically active polymers. J Poly Sci: Polymer Symposia 1975; 51: 135-153
  • 60 Elvira C, Gallardo A, Roman JS, Cifuentes A. Covalent polymer-drug conjugates. Molecules 2005; 10 (01) 114-125
  • 61 Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006; 6 (09) 688-701
  • 62 Berger Jr H, Pizzo SV. Preparation of polyethylene glycol-tissue plasminogen activator adducts that retain functional activity: characteristics and behavior in three animal species. Blood 1988; 71 (06) 1641-1647
  • 63 Rajagopalan S, Gonias SL, Pizzo SV. A nonantigenic covalent streptokinase-polyethylene glycol complex with plasminogen activator function. J Clin Invest 1985; 75 (02) 413-419
  • 64 Sakuragawa N, Shimizu K, Kondo K, Kondo S, Niwa M. Studies on the effect of PEG-modified urokinase on coagulation-fibrinolysis using beagles. Thromb Res 1986; 41 (05) 627-635
  • 65 Moreadith RW, Collen D. Clinical development of PEGylated recombinant staphylokinase (PEG-Sak) for bolus thrombolytic treatment of patients with acute myocardial infarction. Adv Drug Deliv Rev 2003; 55 (10) 1337-1345
  • 66 Collen D, Sinnaeve P, Demarsin E. , et al. Polyethylene glycol-derivatized cysteine-substitution variants of recombinant staphylokinase for single-bolus treatment of acute myocardial infarction. Circulation 2000; 102 (15) 1766-1772
  • 67 Sawhney P, Katare K, Sahni G. PEGylation of truncated streptokinase leads to formulation of a useful drug with ameliorated attributes. PLoS One 2016; 11 (05) e0155831
  • 68 Pöschel KA, Bucha E, Esslinger H-U. , et al. Pharmacodynamics and pharmacokinetics of polyethylene glycol-hirudin in patients with chronic renal failure. Kidney Int 2000; 58 (06) 2478-2484
  • 69 Pöschel KA, Bucha E, Esslinger H-U. , et al. Anticoagulant efficacy of PEG-Hirudin in patients on maintenance hemodialysis. Kidney Int 2004; 65 (02) 666-674
  • 70 Absar S, Choi S, Yang VC, Kwon YM. Heparin-triggered release of camouflaged tissue plasminogen activator for targeted thrombolysis. J Control Release 2012; 157 (01) 46-54
  • 71 Murciano J-C, Muro S, Koniaris L. , et al. ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface. Blood 2003; 101 (10) 3977-3984
  • 72 Ganguly K, Krasik T, Medinilla S. , et al. Blood clearance and activity of erythrocyte-coupled fibrinolytics. J Pharmacol Exp Ther 2005; 312 (03) 1106-1113
  • 73 Gersh KC, Zaitsev S, Cines DB, Muzykantov V, Weisel JW. Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent. Blood 2011; 117 (18) 4964-4967
  • 74 Murciano JC, Medinilla S, Eslin D, Atochina E, Cines DB, Muzykantov VR. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 2003; 21 (08) 891-896
  • 75 Bode C, Meinhardt G, Runge MS. , et al. Platelet-targeted fibrinolysis enhances clot lysis and inhibits platelet aggregation. Circulation 1991; 84 (02) 805-813
  • 76 Chen H, Mo W, Zhang Y. , et al. Functional properties of a novel mutant of staphylokinase with platelet-targeted fibrinolysis and antiplatelet aggregation activities. Eur J Pharmacol 2007; 566 (1-3): 137-144
  • 77 Danielyan K, Ding B-S, Gottstein C, Cines DB, Muzykantov VR. Delivery of anti-platelet-endothelial cell adhesion molecule single-chain variable fragment-urokinase fusion protein to the cerebral vasculature lyses arterial clots and attenuates postischemic brain edema. J Pharmacol Exp Ther 2007; 321 (03) 947-952
  • 78 Ding B-S, Hong N, Murciano J-C. , et al. Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-1 in the pulmonary vasculature. Blood 2008; 111 (04) 1999-2006
  • 79 Fuentes RE, Zaitsev S, Ahn HS. , et al. A chimeric platelet-targeted urokinase prodrug selectively blocks new thrombus formation. J Clin Invest 2016; 126 (02) 483-494
  • 80 Hagemeyer CE, Tomic I, Jaminet P. , et al. Fibrin-targeted direct factor Xa inhibition: construction and characterization of a recombinant factor Xa inhibitor composed of an anti-fibrin single-chain antibody and tick anticoagulant peptide. Thromb Haemost 2004; 92 (01) 47-53
  • 81 Huang T, Li N, Gao J. Recent strategies on targeted delivery of thrombolytics. Asian J Pharm Sci 2019 . Available at: https://doi.org/10.1016/j.ajps.2018.12.004 . Accessed April 2, 2019
  • 82 Bonnard T, Tennant Z, Niego B. , et al. Novel thrombolytic drug based on thrombin cleavable microplasminogen coupled to a single-chain antibody specific for activated GPIIb/IIIa. J Am Heart Assoc 2017; 6 (02) e004535
  • 83 Absar S, Kwon YM, Ahsan F. Bio-responsive delivery of tissue plasminogen activator for localized thrombolysis. J Control Release 2014; 177: 42-50
  • 84 Wei Z, Xin G, Wang H. , et al. The diosgenin prodrug nanoparticles with pH-responsive as a drug delivery system uniquely prevents thrombosis without increased bleeding risk. Nanomedicine (Lond) 2018; 14 (03) 673-684
  • 85 Lasic DD, Papahadjopaulos D. , eds. Medical Applications of Liposomes. Amsterdam, The Netherlands: Elsevier; 1998
  • 86 Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4 (02) 145-160
  • 87 Israelachvili J. Intermolecular and Surface Forces. 2nd ed. New York, NY: Harcourt Brace & Company; 1998
  • 88 Čeh B Winterhalter M, Frederik PM. , et al. Stealth® liposomes: from theory to product. Adv Drug Deliv Rev 1997; 24: 165-177
  • 89 Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1 (03) 297-315
  • 90 Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185-198
  • 91 Nguyen PD, O'Rear EA, Johnson AE, Patterson E, Whitsett TL, Bhakta R. Accelerated thrombolysis and reperfusion in a canine model of myocardial infarction by liposomal encapsulation of streptokinase. Circ Res 1990; 66 (03) 875-878
  • 92 Heeremans JM, Prevost R, Bekkers ME. , et al. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA. Thromb Haemost 1995; 73 (03) 488-494
  • 93 Kim I-S, Choi H-G, Choi H-S, Kim BK, Kim CK. Prolonged systemic delivery of streptokinase using liposome. Arch Pharm Res 1998; 21 (03) 248-252
  • 94 Leach JK, O'Rear EA, Patterson E, Miao Y, Johnson AE. Accelerated thrombolysis in a rabbit model of carotid artery thrombosis with liposome-encapsulated and microencapsulated streptokinase. Thromb Haemost 2003; 90 (01) 64-70
  • 95 Leach JK, Patterson E, O'Rear EA. Improving thrombolysis with encapsulated plasminogen activators and clinical relevance to myocardial infarction and stroke. Clin Hemorheol Microcirc 2004; 30 (3-4): 225-228
  • 96 Perkins WR, Vaughan DE, Plavin SR. , et al. Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thromb Haemost 1997; 77 (06) 1174-1178
  • 97 Erdoğan S, Özer AY, Volkan B, Caner B, Bilgili H. Thrombus localization by using streptokinase containing vesicular systems. Drug Deliv 2006; 13 (04) 303-309
  • 98 El-Sherbiny IM, Elkholi IE, Yacoub MH. Tissue plasminogen activator-based clot busting: Controlled delivery approaches. Glob Cardiol Sci Pract 2014; 2014 (03) 336-349
  • 99 Kim J-Y, Kim J-K, Park J-S, Byun Y, Kim CK. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials 2009; 30 (29) 5751-5756
  • 100 Li H, Chen Y, Deng Y, Wang Y, Ke X, Ci T. Effects of surface charge of low molecular weight heparin-modified cationic liposomes on drug efficacy and toxicity. Drug Dev Ind Pharm 2017; 43 (07) 1163-1172
  • 101 Koromila G, Michanetzis GPA, Missirlis YF, Antimisiaris SG. Heparin incorporating liposomes as a delivery system of heparin from PET-covered metallic stents: effect on haemocompatibility. Biomaterials 2006; 27 (12) 2525-2533
  • 102 Dzau VJ, Mann MJ, Morishita R, Kaneda Y. Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci U S A 1996; 93 (21) 11421-11425
  • 103 Nabel EG. Gene therapy for cardiovascular disease. Circulation 1995; 91 (02) 541-548
  • 104 Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. Novel and effective gene transfer technique for study of vascular renin angiotensin system. J Clin Invest 1993; 91 (06) 2580-2585
  • 105 Leclerc G, Gal D, Takeshita S, Nikol S, Weir L, Isner JM. Percutaneous arterial gene transfer in a rabbit model. Efficiency in normal and balloon-dilated atherosclerotic arteries. J Clin Invest 1992; 90 (03) 936-944
  • 106 Lim CS, Chapman GD, Gammon RS. , et al. Direct in vivo gene transfer into the coronary and peripheral vasculatures of the intact dog. Circulation 1991; 83 (06) 2007-2011
  • 107 Chapman GD, Lim CS, Gammon RS. , et al. Gene transfer into coronary arteries of intact animals with a percutaneous balloon catheter. Circ Res 1992; 71 (01) 27-33
  • 108 Zheng J, Liu J, Dunne M, Jaffray DA, Allen C. In vivo performance of a liposomal vascular contrast agent for CT and MR-based image guidance applications. Pharm Res 2007; 24 (06) 1193-1201
  • 109 Maiseyeu A, Mihai G, Kampfrath T. , et al. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res 2009; 50 (11) 2157-2163
  • 110 Mulder WJ, Douma K, Koning GA. , et al. Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn Reson Med 2006; 55 (05) 1170-1174
  • 111 Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng 2006; 8: 323-341
  • 112 Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release 2012; 161 (02) 473-483
  • 113 Massignani M, Lomas H, Battaglia G. Polymersomes: a synthetic biological approach to encapsulation and delivery. Adv Polym Sci 2010; 229: 115-154
  • 114 Akagi D, Oba M, Koyama H. , et al. Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther 2007; 14 (13) 1029-1038
  • 115 Ding B-S, Dziubla T, Shuvaev VV, Muro S, Muzykantov VR. Advanced drug delivery systems that target the vascular endothelium. Mol Interv 2006; 6 (02) 98-112
  • 116 Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007; 24 (01) 1-16
  • 117 Lincoff AM, Topol EJ, Ellis SG. Local drug delivery for the prevention of restenosis. Fact, fancy, and future. Circulation 1994; 90 (04) 2070-2084
  • 118 Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70 (1-2): 1-20
  • 119 Yang Z, Birkenhauer P, Julmy F. , et al. Sustained release of heparin from polymeric particles for inhibition of human vascular smooth muscle cell proliferation. J Control Release 1999; 60 (2-3): 269-277
  • 120 Chung T-W, Wang SS, Tsai W-J. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials 2008; 29 (02) 228-237
  • 121 Klugherz BD, Meneveau N, Chen W. , et al. Sustained intramural retention and regional redistribution following local vascular delivery of Polylactic-coglycolic acid and liposomal nanoparticulate formulations containing probucol. J Cardiovasc Pharmacol Ther 1999; 4 (03) 167-174
  • 122 Kolodgie FD, John M, Khurana C. , et al. Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 2002; 106 (10) 1195-1198
  • 123 Westedt U, Kalinowski M, Wittmar M. , et al. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J Control Release 2007; 119 (01) 41-51
  • 124 Deshpande D, Devalapally H, Amiji M. Enhancement in anti-proliferative effects of paclitaxel in aortic smooth muscle cells upon co-administration with ceramide using biodegradable polymeric nanoparticles. Pharm Res 2008; 25 (08) 1936-1947
  • 125 Zou W, Cao G, Xi Y, Zhang N. New approach for local delivery of rapamycin by bioadhesive PLGA-Carbopol nanoparticles. Drug Deliv 2009; 16 (01) 15-23
  • 126 Zweers ML, Engbers GH, Grijpma DW, Feijen J. Release of anti-restenosis drugs from poly(ethylene oxide)-poly(DL-lactic-co-glycolic acid) nanoparticles. J Control Release 2006; 114 (03) 317-324
  • 127 Luderer F, Löbler M, Rohm HW. , et al. Biodegradable sirolimus-loaded poly(lactide) nanoparticles as drug delivery system for the prevention of in-stent restenosis in coronary stent application. J Biomater Appl 2011; 25 (08) 851-875
  • 128 Nakano K, Egashira K, Masuda S. , et al. Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries. JACC Cardiovasc Interv 2009; 2 (04) 277-283
  • 129 Margolis J, McDonald J, Heuser R. , et al. Systemic nanoparticle paclitaxel (nab-paclitaxel) for in-stent restenosis I (SNAPIST-I): a first-in-human safety and dose-finding study. Clin Cardiol 2007; 30 (04) 165-170
  • 130 Unger E, Matsunaga TO, Schumann PA. , et al. Microbubbles in molecular imaging and therapy. Medicamundi 2003; 47: 58-65
  • 131 Cavalieri F, Finelli I, Tortora M. , et al. Polymer microbubbles as diagnostic and therapeutic gas delivery device. Chem Mater 2008; 20: 3254-3258
  • 132 Tsivgoulis G, Culp WC, Alexandrov AV. Ultrasound enhanced thrombolysis in acute arterial ischemia. Ultrasonics 2008; 48 (04) 303-311
  • 133 Rubiera M, Alexandrov AV. Sonothrombolysis in the management of acute ischemic stroke. Am J Cardiovasc Drugs 2010; 10 (01) 5-10
  • 134 Mayer CR, Bekeredjian R. Ultrasonic gene and drug delivery to the cardiovascular system. Adv Drug Deliv Rev 2008; 60 (10) 1177-1192
  • 135 Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK. Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 2009; 124 (03) 306-310
  • 136 Tiukinhoy-Laing SD, Buchanan K, Parikh D. , et al. Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J Drug Target 2007; 15 (02) 109-114
  • 137 Tomalia DA. Starburst dendrimers—nanoscopic supermolecules according to dendritic rules and principles. Macromol Symp 1996; 101: 243-255
  • 138 Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990; 112: 7638-7647
  • 139 Svenson S, Tomalia DA. Dendrimers in biomedical applications--reflections on the field. Adv Drug Deliv Rev 2005; 57 (15) 2106-2129
  • 140 Fernandes EG, de Queiroz AA, Abraham GA, San Román J. Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J Mater Sci Mater Med 2006; 17 (02) 105-111
  • 141 Wu C, Gao C, Lü S. , et al. Construction of polylysine dendrimer nanocomposites carrying nattokinase and their application in thrombolysis. J Biomed Mater Res A 2018; 106 (02) 440-449
  • 142 Zhang S-F, Lü S, Gao C. , et al. Multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer: design, synthesis, and dissolving thrombus. J Biomed Mater Res A 2018; 106 (06) 1687-1696
  • 143 Chen PC, Mwakwari SC, Oyelere AK. Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 2008; 1: 45-65
  • 144 Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev 2008; 37 (09) 1896-1908
  • 145 Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008; 23 (03) 217-228
  • 146 Rosen JE, Chan L, Shieh DB, Gu FX. Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine (Lond) 2012; 8 (03) 275-290
  • 147 Tassa C, Shaw SY, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 2011; 44 (10) 842-852
  • 148 Yen SK, Padmanabhan P, Selvan ST. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 2013; 3 (12) 986-1003
  • 149 Brust M, Walker M, Bethell D. , et al. Synthesis of thiol derivatized gold nanoparticles in a two phase liquid-liquid system. J Chem Soc Chem Commun 1994; 7: 801-802
  • 150 Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002; 298 (5601): 2176-2179
  • 151 Vekilov PG. Gold nanoparticles: grown in a crystal. Nat Nanotechnol 2011; 6 (02) 82-83
  • 152 Au L, Lu X, Xia Y. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2− or AuCl4− . Adv Mater 2008; 20 (13) 2517-2522
  • 153 Choi Y, Hong S, Liu L, Kim SK, Park S. Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance. Langmuir 2012; 28 (16) 6670-6676
  • 154 Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Gold nanoparticles - the theranostic challenge for PPPM: nanocardiology application. EPMA J 2013; 4 (01) 18
  • 155 Wang B, Yantsen E, Larson T. , et al. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett 2009; 9 (06) 2212-2217
  • 156 Cormode DP, Roessl E, Thran A. , et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010; 256 (03) 774-782
  • 157 Lee S, Cha EJ, Park K. , et al. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem Int Ed Engl 2008; 47 (15) 2804-2807
  • 158 Lukianova-Hleb EY, Mrochek AG, Lapotko DO. Method for disruption and re-canalization of atherosclerotic plaques in coronary vessels with photothermal bubbles generated around gold nanoparticles. Lasers Surg Med 2009; 41 (03) 240-247
  • 159 Karaagac O, Kockar H, Beyaz S. , et al. A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: iron ion concentration effect. IEEE Trans Magn 2010; 46: 3978-3983
  • 160 Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990; 175 (02) 489-493
  • 161 McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008; 60 (11) 1241-1251
  • 162 Sosnovik DE, Nahrendorf M, Weissleder R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 2008; 103 (02) 122-130
  • 163 Bjørnerud A, Johansson L. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 2004; 17 (07) 465-477
  • 164 Yilmaz A, Dengler MA, van der Kuip H. , et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J 2013; 34 (06) 462-475
  • 165 Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 2006; 5 (02) 85-92
  • 166 Trivedi RA, U-King-Im JM, Graves MJ. , et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 2004; 35 (07) 1631-1635
  • 167 Tang TY, Muller KH, Graves MJ. , et al. Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 2009; 29 (07) 1001-1008
  • 168 Schmitz SA, Taupitz M, Wagner S, Wolf KJ, Beyersdorff D, Hamm B. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging 2001; 14 (04) 355-361
  • 169 Morishige K, Kacher DF, Libby P. , et al. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 2010; 122 (17) 1707-1715
  • 170 Sigovan M, Boussel L, Sulaiman A. , et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 2009; 252 (02) 401-409
  • 171 Kawahara I, Nakamoto M, Kitagawa N. , et al. Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque. Neurol Med Chir (Tokyo) 2008; 48 (04) 157-161 , discussion 161–162
  • 172 Erdem SS, Sazonova IY, Hara T, Jaffer FA, McCarthy JR. Detection and treatment of intravascular thrombi with magnetofluorescent nanoparticles. Methods Enzymol 2012; 508: 191-209
  • 173 Wuang SC, Neoh KG, Kang E-T. , et al. Heparinized magnetic nanoparticles: in vitro assessment for biomedical applications. Adv Funct Mater 2006; 16: 1723-1730
  • 174 Chorny M, Fishbein I, Yellen BB. , et al. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci U S A 2010; 107 (18) 8346-8351
  • 175 Sharma R, Kwon S. New applications of nanoparticles in cardiovascular imaging. J Exp Nanosci 2007; 2: 115-126
  • 176 Cormode DP, Skajaa T, Fayad ZA, Mulder WJ. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009; 29 (07) 992-1000
  • 177 Sinusas AJ, Bengel F, Nahrendorf M. , et al. Multimodality cardiovascular molecular imaging, Part I. Circ Cardiovasc Imaging 2008; 1 (03) 244-256
  • 178 Nahrendorf M, Sosnovik DE, French BA. , et al. Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2009; 2 (01) 56-70
  • 179 Smith AM, Gao X, Nie S. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 2004; 80 (03) 377-385
  • 180 Douma K, Prinzen L, Slaaf DW. , et al. Nanoparticles for optical molecular imaging of atherosclerosis. Small 2009; 5 (05) 544-557
  • 181 Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 2009; 9 (06) 2354-2359
  • 182 Tang Y, Han S, Liu H. , et al. The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots. Biomaterials 2013; 34 (34) 8741-8755
  • 183 Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC. In vivo quantum-dot toxicity assessment. Small 2010; 6 (01) 138-144
  • 184 Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA. High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30 (02) 169-176
  • 185 Frias JC, Williams KJ, Fisher EA, Fayad ZA. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 2004; 126 (50) 16316-16317
  • 186 Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA. Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 2006; 6 (10) 2220-2224
  • 187 Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148 (02) 135-146
  • 188 Hirsjärvi S, Passirani C, Benoit JP. Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol 2011; 8 (03) 188-196
  • 189 Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 2010; 5 (09) 1415-1433
  • 190 Blackwell JE, Dagia NM, Dickerson JB, Berg EL, Goetz DJ. Ligand coated nanosphere adhesion to E- and P-selectin under static and flow conditions. Ann Biomed Eng 2001; 29 (06) 523-533
  • 191 Jancsó G, Domoki F, Sántha P. , et al. Beta-amyloid (1-42) peptide impairs blood-brain barrier function after intracarotid infusion in rats. Neurosci Lett 1998; 253 (02) 139-141
  • 192 Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y. Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Ib alpha under flow conditions: specific synergy of receptor-ligand interactions. Blood 2002; 100 (01) 136-142
  • 193 Wada T, Okamura Y, Takeoka S. , et al. Deformability and adhesive force of artificial platelets measured by atomic force microscopy. J Biorheol 2009; 23 (01) 35-40
  • 194 Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y. Platelet interactions with liposomes carrying recombinant platelet membrane glycoproteins or fibrinogen: approach to platelet substitutes. Artif Cells Blood Substit Immobil Biotechnol 2001; 29 (06) 453-464
  • 195 Wilchek M, Bayer EA, Livnah O. Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunol Lett 2006; 103 (01) 27-32
  • 196 Lesch HP, Kaikkonen MU, Pikkarainen JT, Ylä-Herttuala S. Avidin-biotin technology in targeted therapy. Expert Opin Drug Deliv 2010; 7 (05) 551-564
  • 197 Muzykantov V. Targeted Drug Delivery to Endothelial Adhesion Molecules. ISRN Vascular Medicine 2013; Article ID 916254. Available at: http://dx.doi.org/10.1155/2013/916254 . Accessed April 2, 2019
  • 198 Sen Gupta A, von Recum HA. Bioconjugation strategies: lipids, liposomes, polymersomes, and microbubbles. In: Narain R. , ed. Chemistry of Bioconjugates: Synthesis, Characterization, and Biomedical Applications. Hoboken, NJ: Wiley; 2014
  • 199 Leung MKM, Hagemeyer CE, Johnston APR. , et al. Bio-click chemistry: enzymatic functionalization of PEGylated capsules for targeting applications. Angew Chem Int Ed Engl 2012; 51 (29) 7132-7136
  • 200 Walper SA, Turner KB, Medintz IL. Enzymatic bioconjugation of nanoparticles: developing specificity and control. Curr Opin Biotechnol 2015; 34: 232-241
  • 201 Demos SM, Alkan-Onyuksel H, Kane BJ. , et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 1999; 33 (03) 867-875
  • 202 Klegerman ME, Zou Y, McPherson DD. Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J Liposome Res 2008; 18 (02) 95-112
  • 203 Huang S-L. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008; 60 (10) 1167-1176
  • 204 Wang X, Hagemeyer CE, Hohmann JD. , et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation 2012; 125 (25) 3117-3126
  • 205 Li D, Patel AR, Klibanov AL. , et al. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ Cardiovasc Imaging 2010; 3 (04) 464-472
  • 206 Homem de Bittencourt Jr PI, Lagranha DJ, Maslinkiewicz A. , et al. LipoCardium: endothelium-directed cyclopentenone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions. Atherosclerosis 2007; 193 (02) 245-258
  • 207 Kim W, Haller C, Dai E. , et al. Targeted antithrombotic protein micelles. Angew Chem Int Ed Engl 2015; 54 (05) 1461-1465
  • 208 Ta HT, Li Z, Hagemeyer CE. , et al. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials 2017; 134: 31-42
  • 209 Alt K, Paterson BM, Ardipradja K. , et al. Single-chain antibody conjugated to a cage amine chelator and labeled with positron-emitting copper-64 for diagnostic imaging of activated platelets. Mol Pharm 2014; 11 (08) 2855-2863
  • 210 Gupta AS, Huang G, Lestini BJ, Sagnella S, Kottke-Marchant K, Marchant RE. RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb Haemost 2005; 93 (01) 106-114
  • 211 Huang G, Zhou Z, Srinivasan R. , et al. Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials 2008; 29 (11) 1676-1685
  • 212 Srinivasan R, Marchant RE, Gupta AS. In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A 2010; 93 (03) 1004-1015
  • 213 Modery CL, Ravikumar M, Wong TL, Dzuricky MJ, Durongkaveroj N, Sen Gupta A. Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials 2011; 32 (35) 9504-9514
  • 214 Ravikumar M, Modery CL, Wong TL, Dzuricky M, Sen Gupta A. Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes. Bioconjug Chem 2012; 23 (06) 1266-1275
  • 215 Ravikumar M, Modery CL, Wong TL, Gupta AS. Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro. Biomacromolecules 2012; 13 (05) 1495-1502
  • 216 Modery-Pawlowski CL, Tian LL, Ravikumar M, Wong TL, Sen Gupta A. In vitro and in vivo hemostatic capabilities of a functionally integrated platelet-mimetic liposomal nanoconstruct. Biomaterials 2013; 34 (12) 3031-3041
  • 217 Haji-Valizadeh HN, Modery-Pawlowski CL, Sen Gupta A. A FVIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets. Nanoscale 2014; 6 (09) 4765-4773
  • 218 Shukla M, Sekhon UD, Betapudi V. , et al. In vitro characterization of SynthoPlate™ (synthetic platelet) technology and its in vivo evaluation in severely thrombocytopenic mice. J Thromb Haemost 2017; 15 (02) 375-387
  • 219 Pawlowski CL, Li W, Sun M. , et al. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials 2017; 128: 94-108
  • 220 Hickman DA, Pawlowski CL, Shevitz A. , et al. Intravenous synthetic platelet (SynthoPlate) nanoconstructs reduce bleeding and improve ‘golden hour’ survival in a porcine model of traumatic arterial hemorrhage. Sci Rep 2018; 8 (01) 3118
  • 221 Mulder WJM, Strijkers GJ, Briley-Saboe KC. , et al. Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles. Magn Reson Med 2007; 58 (06) 1164-1170
  • 222 Lipinski MJ, Amirbekian V, Frias JC. , et al. MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 2006; 56 (03) 601-610
  • 223 Briley-Saebo KC, Shaw PX, Mulder WJM. , et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 2008; 117 (25) 3206-3215
  • 224 Amirbekian V, Lipinski MJ, Frias JC. , et al. MR imaging of human atherosclerosis using immunomicelles molecularly targeted to macrophages. J Cardiovasc Magn Reson 2009; 11 (Suppl. 01) 83
  • 225 Chan JM, Zhang L, Tong R. , et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci U S A 2010; 107 (05) 2213-2218
  • 226 Chan JM, Rhee JW, Drum CL. , et al. In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles. Proc Natl Acad Sci U S A 2011; 108 (48) 19347-19352
  • 227 Peters D, Kastantin M, Kotamraju VR. , et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci U S A 2009; 106 (24) 9815-9819
  • 228 Hamzah J, Kotamraju VR, Seo JW. , et al. Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 2011; 108 (17) 7154-7159
  • 229 Koning GA, Schiffelers RM, Storm G. Endothelial cells at inflammatory sites as target for therapeutic intervention. Endothelium 2002; 9 (03) 161-171
  • 230 Muro S, Dziubla T, Qiu W. , et al. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. J Pharmacol Exp Ther 2006; 317 (03) 1161-1169
  • 231 Deosarkar SP, Malgor R, Fu J, Kohn LD, Hanes J, Goetz DJ. Polymeric particles conjugated with a ligand to VCAM-1 exhibit selective, avid, and focal adhesion to sites of atherosclerosis. Biotechnol Bioeng 2008; 101 (02) 400-407
  • 232 Garnacho C, Serrano D, Muro S. A fibrinogen-derived peptide provides intercellular adhesion molecule-1-specific targeting and intraendothelial transport of polymer nanocarriers in human cell cultures and mice. J Pharmacol Exp Ther 2012; 340 (03) 638-647
  • 233 Khondee S, Baoum A, Siahaan TJ, Berkland C. Calcium condensed LABL-TAT complexes effectively target gene delivery to ICAM-1 expressing cells. Mol Pharm 2011; 8 (03) 788-798
  • 234 Zhang N, Chittasupho C, Duangrat C, Siahaan TJ, Berkland C. PLGA nanoparticle--peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug Chem 2008; 19 (01) 145-152
  • 235 Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 2005; 96 (03) 327-336
  • 236 Nahrendorf M, Jaffer FA, Kelly KA. , et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006; 114 (14) 1504-1511
  • 237 Burtea C, Laurent S, Port M. , et al. Magnetic resonance molecular imaging of vascular cell adhesion molecule-1 expression in inflammatory lesions using a peptide-vectorized paramagnetic imaging probe. J Med Chem 2009; 52 (15) 4725-4742
  • 238 Bertram JP, Williams CA, Robinson R, Segal SS, Flynn NT, Lavik EB. Intravenous hemostat: nanotechnology to halt bleeding. Sci Transl Med 2009; 1 (11) 11ra22
  • 239 Hubbard WB, Lashoff-Sullivan MM, Lavik EB. , et al. Steroid-loaded hemostatic nanoparticles combat lung injury after blast trauma. ACS Macro Lett 2015; 4 (04) 387-391
  • 240 Coller BS, Springer KT, Beer JH. , et al. Thromboerythrocytes. In vitro studies of a potential autologous, semi-artificial alternative to platelet transfusions. J Clin Invest 1992; 89 (02) 546-555
  • 241 Levi M, Friederich PW, Middleton S. , et al. Fibrinogen-coated albumin microcapsules reduce bleeding in severely thrombocytopenic rabbits. Nat Med 1999; 5 (01) 107-111
  • 242 Okamura Y, Takeoka S, Teramura Y. , et al. Hemostatic effects of fibrinogen gamma-chain dodecapeptide-conjugated polymerized albumin particles in vitro and in vivo. Transfusion 2005; 45 (07) 1221-1228
  • 243 Okamura Y, Fujie T, Nogawa M. , et al. Haemostatic effects of polymerized albumin particles carrying fibrinogen gamma-chain dodecapeptide as platelet substitutes in severely thrombocytopenic rabbits. Transfus Med 2008; 18 (03) 158-166
  • 244 Takeoka S, Okamura Y, Teramura Y. , et al. Function of fibrinogen gamma-chain dodecapeptide-conjugated latex beads under flow. Biochem Biophys Res Commun 2003; 312 (03) 773-779
  • 245 Okamura Y, Handa M, Suzuki H, Ikeda Y, Takeoka S. New strategy of platelet substitutes for enhancing platelet aggregation at high shear rates: cooperative effects of a mixed system of fibrinogen gamma-chain dodecapeptide- or glycoprotein Ibalpha-conjugated latex beads under flow conditions. J Artif Organs 2006; 9 (04) 251-258
  • 246 Chen W, Jarzyna PA, van Tilborg GA. , et al. RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB J 2010; 24 (06) 1689-1699
  • 247 Richardson JJ, Choy MY, Guo J. , et al. Polymer capsules for plaque-targeted in vivo delivery. Adv Mater 2016; 28 (35) 7703-7707
  • 248 Kaufmann BA, Sanders JM, Davis C. , et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007; 116 (03) 276-284
  • 249 Lindner JR. Molecular imaging of cardiovascular disease with contrast-enhanced ultrasonography. Nat Rev Cardiol 2009; 6 (07) 475-481
  • 250 Villanueva FS, Wagner WR. Ultrasound molecular imaging of cardiovascular disease. Nat Clin Pract Cardiovasc Med 2008; 5 (Suppl. 02) S26-S32
  • 251 Alonso A, Della Martina A, Stroick M. , et al. Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 2007; 38 (05) 1508-1514
  • 252 Hagooly A, Almutairi A, Rossin R. , et al. Evaluation of a RGD-dendrimer labeled with 76Br in hindlimb ischemia mouse model. J Nucl Med 2008; 49 (Suppl. 01) 184
  • 253 Taite LJ, West JL. Poly(ethylene glycol)-lysine dendrimers for targeted delivery of nitric oxide. J Biomat Sci Polym Ed 2006; 17 (10) 1159-1172
  • 254 Makowski M, Jansen C, Botnar R. , et al. Molecular MRI of atherosclerosis: from mouse to man. Medicamundi 2010; 54: 14
  • 255 Thukkani AK, Glaus C, Welch MJ. Molecular imaging of vascular inflammation with nanoparticles. Curr Cardiovasc Imaging Rep 2010; 3 (03) 151-161
  • 256 McAteer MA, Akhtar AM, von Zur Muhlen C, Choudhury RP. An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 2010; 209 (01) 18-27
  • 257 Smith BR, Heverhagen J, Knopp M. , et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 2007; 9 (05) 719-727
  • 258 Ferrara DE, Glaus C, Taylor WR. Targeting vascular epitopes using quantum dots. Nanoparticles in biomedical imaging. Fundamental Biomed Tech 2008; 102: 443-461
  • 259 Jayagopal A, Russ PK, Haselton FR. Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem 2007; 18 (05) 1424-1433
  • 260 Kahn E, Vejux A, Ménétrier F. , et al. Analysis of CD36 expression on human monocytic cells and atherosclerotic tissue sections with quantum dots: investigation by flow cytometry and spectral imaging microscopy. Anal Quant Cytol Histol 2006; 28 (01) 14-26
  • 261 Prinzen L, Miserus RJ, Dirksen A. , et al. Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots. Nano Lett 2007; 7 (01) 93-100
  • 262 Mulder WJ, Koole R, Brandwijk RJ. , et al. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 2006; 6 (01) 1-6
  • 263 Chang E, Miller JS, Sun J. , et al. Protease-activated quantum dot probes. Biochem Biophys Res Commun 2005; 334 (04) 1317-1321
  • 264 Edelman ER, Adams DH, Karnovsky MJ. Effect of controlled adventitial heparin delivery on smooth muscle cell proliferation following endothelial injury. Proc Natl Acad Sci U S A 1990; 87 (10) 3773-3777
  • 265 Villa AE, Guzman LA, Chen W, Golomb G, Levy RJ, Topol EJ. Local delivery of dexamethasone for prevention of neointimal proliferation in a rat model of balloon angioplasty. J Clin Invest 1994; 93 (03) 1243-1249
  • 266 Nathan A, Nugent MA, Edelman ER. Tissue engineered perivascular endothelial cell implants regulate vascular injury. Proc Natl Acad Sci U S A 1995; 92 (18) 8130-8134
  • 267 Nugent HM, Rogers C, Edelman ER. Endothelial implants inhibit intimal hyperplasia after porcine angioplasty. Circ Res 1999; 84 (04) 384-391
  • 268 Wilensky RL, March KL, Gradus-Pizlo I. , et al. Regional and arterial localization of radioactive microparticles after local delivery by unsupported or supported porous balloon catheters. Am Heart J 1995; 129 (05) 852-859
  • 269 Zhang L, Keogh S, Rickard CM. Reducing the risk of infection associated with vascular access devices through nanotechnology: a perspective. Int J Nanomedicine 2013; 8: 4453-4466
  • 270 Harris DL, Graffagnini MJ. Nanomaterials in medical devices: a snapshot of markets, technologies and companies. Nanotechnol Law Business 2007; 4: 415-422
  • 271 Martinez AW, Chaikof EL. Microfabrication and nanotechnology in stent design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011; 3 (03) 256-268
  • 272 McDowell G, Slevin M, Krupinski J. Nanotechnology for the treatment of coronary in stent restenosis: a clinical perspective. Vasc Cell 2011; 3 (01) 8
  • 273 Yin R-X, Yang D-Z, Wu J-Z. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics 2014; 4 (02) 175-200
  • 274 Goh D, Tan A, Farhatnia Y, Rajadas J, Alavijeh MS, Seifalian AM. Nanotechnology-based gene-eluting stents. Mol Pharm 2013; 10 (04) 1279-1298
  • 275 Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput 2007; 45 (04) 327-336
  • 276 de Mel A, Naghavi N, Cousins BG. , et al. Nitric oxide-eluting nanocomposite for cardiovascular implants. J Mater Sci Mater Med 2014; 25 (03) 917-929
  • 277 Charoenphol P, Huang RB, Eniola-Adefeso O. Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials 2010; 31 (06) 1392-1402
  • 278 Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 2011; 22 (11) 115101
  • 279 Decuzzi P, Lee S, Bhushan B, Ferrari M. A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 2005; 33 (02) 179-190
  • 280 Lee T-R, Choi M, Kopacz AM, Yun SH, Liu WK, Decuzzi P. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better. Sci Rep 2013; 3: 2079
  • 281 Müller K, Fedosov DA, Gompper G. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep 2014; 4: 4871
  • 282 Tao L, Hu W, Liu Y, Huang G, Sumer BD, Gao J. Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp Biol Med (Maywood) 2011; 236 (01) 20-29
  • 283 Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007; 121 (1-2): 3-9
  • 284 Shah S, Liu Y, Hu W, Gao J. Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 2011; 11 (02) 919-928
  • 285 Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33 (09) 941-951
  • 286 Pillai JD, Dunn SS, Napier ME, DeSimone JM. Novel platforms for vascular carriers with controlled geometry. IUBMB Life 2011; 63 (08) 596-606
  • 287 Decuzzi P, Ferrari M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006; 27 (30) 5307-5314
  • 288 Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S. Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release 2010; 146 (02) 196-200
  • 289 Vahidkhah K, Bagchi P. Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension. Soft Matter 2015; 11 (11) 2097-2109
  • 290 Fish MB, Thompson AJ, Fromen CA, Eniola-Adefeso O. Emergence and utility of non-spherical particles in biomedicine. Ind Eng Chem Res 2015; 54 (16) 4043-4059
  • 291 Thompson AJ, Mastria EM, Eniola-Adefeso O. The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 2013; 34 (23) 5863-5871
  • 292 Anselmo AC, Zhang M, Kumar S. , et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 2015; 9 (03) 3169-3177
  • 293 Fish MB, Fromen CA, Lopez-Cazares G. , et al. Exploring deformable particles in vascular-targeted drug delivery: softer is only sometimes better. Biomaterials 2017; 124: 169-179
  • 294 Gutierrez M, Ojeda LS, Eniola-Adefeso O. Vascular-targeted particle binding efficacy in the presence of rigid red blood cells: Implications for performance in diseased blood. Biomicrofluidics 2018; 12 (04) 042217
  • 295 Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 1988; 8 (06) 819-824
  • 296 Skorczewski T, Erickson LC, Fogelson AL. Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations. Biophys J 2013; 104 (08) 1764-1772
  • 297 Tokarev AA, Butylin AA, Ermakova EA, Shnol EE, Panasenko GP, Ataullakhanov FI. Finite platelet size could be responsible for platelet margination effect. Biophys J 2011; 101 (08) 1835-1843
  • 298 Kumar A, Graham MD. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter 2012; 8 (10) 10536-10548
  • 299 Vahidkhah K, Diamond SL, Bagchi P. Platelet dynamics in three-dimensional simulation of whole blood. Biophys J 2014; 106 (11) 2529-2540
  • 300 Perry JL, Herlihy KP, Napier ME, Desimone JM. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 2011; 44 (10) 990-998
  • 301 Daum N, Tscheka C, Neumeyer A, Schneider M. Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4 (01) 52-65
  • 302 Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 2010; 7 (04) 479-495
  • 303 Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009; 8 (01) 15-23
  • 304 Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci U S A 2007; 104 (29) 11901-11904
  • 305 Doshi N, Orje JN, Molins B, Smith JW, Mitragotri S, Ruggeri ZM. Platelet mimetic particles for targeting thrombi in flowing blood. Adv Mater 2012; 24 (28) 3864-3869
  • 306 Anselmo AC, Modery-Pawlowski CL, Menegatti S. , et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 2014; 8 (11) 11243-11253
  • 307 Wibroe PP, Anselmo AC, Nilsson PH. , et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat Nanotechnol 2017; 12 (06) 589-594
  • 308 Pan DC, Myerson JW, Brenner JS. , et al. Nanoparticle properties modulate their attachment and effect on carrier red blood cells. Sci Rep 2018; 8 (01) 1615
  • 309 Myerson JW, Braender B, Mcpherson O. , et al. Flexible nanoparticles reach sterically obscure endothelial targets inaccessible to rigid nanoparticles. Adv Mater 2018; 30 (32) e1802373
  • 310 Brenner JS, Pan DC, Myerson JW. , et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun 2018; 9 (01) 2684
  • 311 Modery-Pawlowski CL, Gupta AS. Heteromultivalent ligand-decoration for actively targeted nanomedicine. Biomaterials 2014; 35 (09) 2568-2579
  • 312 Myerson JW, Anselmo AC, Liu Y. , et al. Non-affinity factors modulating vascular targeting of nano- and microcarriers. Adv Drug Del Rev 2016; 99 (Pt A): 97-112
  • 313 Parhiz H, Khoshnejad M, Myerson JW. , et al. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130: 90-112
  • 314 Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release 2012; 161 (02) 351-362
  • 315 Peppas NA, Narasimhan B. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release 2014; 190: 75-81
  • 316 Shum P, Kim JM, Thompson DH. Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev 2001; 53 (03) 273-284
  • 317 Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58 (15) 1655-1670
  • 318 Marsh JN, Senpan A, Hu G. , et al. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine (Lond) 2007; 2 (04) 533-543
  • 319 Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009; 10 (02) 197-209
  • 320 Ma Y-H, Wu S-Y, Wu T, Chang YJ, Hua MY, Chen JP. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials 2009; 30 (19) 3343-3351
  • 321 Bi F, Zhang J, Su Y, Tang YC, Liu JN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009; 30 (28) 5125-5130
  • 322 Paasonen L, Sipilä T, Subrizi A. , et al. Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. J Control Release 2010; 147 (01) 136-143
  • 323 Korin N, Kanapathipillai M, Matthews BD. , et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012; 337 (6095): 738-742
  • 324 Holme MN, Fedotenko IA, Abegg D. , et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat Nanotechnol 2012; 7 (08) 536-543
  • 325 Lin KY, Kwong GA, Warren AD, Wood DK, Bhatia SN. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 2013; 7 (10) 9001-9009
  • 326 Lin KY, Lo JH, Consul N, Kwong GA, Bhatia SN. Self-titrating anticoagulant nanocomplexes that restore homeostatic regulation of the coagulation cascade. ACS Nano 2014; 8 (09) 8776-8785
  • 327 Hansen AH, Mouritsen OG, Arouri A. Enzymatic action of phospholipase A2 on liposomal drug delivery systems. Int J Pharm 2015; 491 (1-2): 49-57
  • 328 Tasci TO, Disharoon D, Schoeman RM. , et al. Enhanced fibrinolysis with magnetically powered colloidal microwheels. Small 2017 13(36). Doi: 10.1002/smll.201700954 [epub ahead of print]