Synthesis 2019; 51(24): 4590-4600
DOI: 10.1055/s-0039-1690702
paper
© Georg Thieme Verlag Stuttgart · New York

Methyl-α-d-glucopyranoside as Green Ligand for Selective Copper-Catalyzed N-Arylation

Yuanguang Chen
,
Fangyu Du
,
Fengyang Chen
,
Qifan Zhou
,
Guoliang Chen
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China   Email: spucgl@163.com
› Author Affiliations
This work was financially supported by Natural Science Foundation of Liaoning Province (No. 201602707), Discipline Construction Program of Shenyang Pharmaceutical University (No. 52134606)
Further Information

Publication History

Received: 28 August 2019

Accepted after revision: 17 September 2019

Publication Date:
14 October 2019 (online)


Abstract

In the selective N-arylation of amines or azoles with aryl halides­, methyl-α-d-glucopyranoside (MG) was found to function as a green ligand of copper powder. In addition, nitrogen heterocyclic amine compounds can also undergo the N-arylation coupling with heterocyclic aryl chlorides. This process allows access to a variety of aromatic amines and aryl azoles under mild reaction conditions, has good tolerance, and proceeds in moderate to high yield.

Supporting Information

 
  • References

    • 2a Lange JH. M, van Stuivenberg HH, Coolen HK. A. C, Adolfs TJ. P, McCreary AC, Keizer HG, Wals HC, Veerman W, Borst AJ. M, de Looff W, Verveer PC, Kruse CG. J. Med. Chem. 2005; 48: 1823
    • 2b Quan ML, Lam PY. S, Han Q, Pinto DJ. P, He MY, Li R, Ellis CD, Clark CG, Teleha CA, Sun JH, Alexander RS, Bai S, Luettgen JM, Knabb RM, Wong PC, Wexler RR. J. Med. Chem. 2005; 48: 1729
    • 2c Wiglenda T, Gust R. J. Med. Chem. 2007; 50: 1475
    • 2d Shi W, Nacev BA, Aftab BT, Head S, Rudin CM, Liu JO. J. Med. Chem. 2011; 54: 7363
    • 2e Jiang J, Ghoreschi K, Deflorian F, Chen Z, Perreira M, Pesu M, Smith J, Nguyen D, Liu E, Leister W, Costanzi S, O’Shea J, Thomas C. J. Med. Chem. 2008; 51: 8012
    • 2f Chan CM, Jing X, Pike LA, Zhou Q, Lim D.-J, Sams SB, Lund GS, Sharma V, Haugen BR, Schweppe RE. Clin. Cancer Res. 2012; 18: 3580
    • 2g Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Blood 2000; 96: 925
    • 3a Kwan EE, Zeng Y, Besser HA, Jacobsen EN. Nat. Chem. 2018; 10: 917
    • 3b Neumann CN, Hooker JM, Ritter T. Nature 2016; 534: 369
    • 5a Hartwig JF. Acc. Chem. Res. 1998; 31: 852
    • 5b Yang BH, Buchwald SL. J. Organomet. Chem. 1999; 576: 125
    • 6a Qiao JX, Lam PY. S. Synthesis 2011; 829
    • 6b Rao DN, Rasheed S, Vishwakarma RA, Das P. Chem. Commun. 2014; 50: 12911
    • 6c Reddy AS, Reddy KR, Rao DN, Jaladanki CK, Bharatam PV, Lam PY. S, Das P. Org. Biomol. Chem. 2017; 15: 801
    • 6d Duparc VH, Bano GL, Schaper F. ACS Catal. 2018; 8: 7308
    • 6e Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJ. B. J. Am. Chem. Soc. 2017; 139: 4769
  • 7 Ullmann F. Ber. Dtsch. Chem. Ges. 1903; 36: 2382
    • 8a Kiyomori A, Marcoux JF, Buchwald SL. Tetrahedron Lett. 1999; 40: 2657
    • 8b Kuil M, Bekedam EK, Visser GM, van den Hoogenband A, Terpstra JW, Kamer PC. J, Kamer van Leeuwen PW. N. M, van Strijdonck GP. F. Tetrahedron Lett. 2005; 46: 2405
    • 8c Altman RA, Buchwald SL. Org. Lett. 2006; 8: 2779
    • 8d Klapars A, Antilla JC, Huang X, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
    • 8e Alcalde E, Dinarès I, Rodríguez S, Garcia de Miguel C. Eur. J. Org. Chem. 2005; 1637
    • 8f Antilla JC, Baskin JM, Barder TE, Buchwald SL. J. Org. Chem. 2004; 69: 5578
    • 8g Ma D, Cai Q. Synlett 2004; 128
    • 8h Zhang H, Cai Q, Ma D. J. Org. Chem. 2005; 70: 5164
    • 8i Lv X, Wang Z, Bao W. Tetrahedron 2006; 62: 4756
    • 8j Liu L, Frohn M, Xi N, Dominguez C, Hungate R, Reider PJ. J. Org. Chem. 2005; 70: 10135
    • 9a Antilla JC, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 11684
    • 9b Cristau HJ, Cellier PP, Spindler JF, Taillefer M. Eur. J. Org. Chem. 2004; 695
    • 10a Deshpande PP, Danishefsky SJ. Nature 1997; 387: 164
    • 10b Tatsuta K, Hosokawa S. Sci. Technol. Adv. Mater. 2006; 7: 397
    • 10c David A. Isr. J. Chem. 2010; 50: 204
    • 11a Thakur KG, Ganapathy D, Sekar G. Chem. Commun. 2011; 47: 5076
    • 11b Thakur KG, Sekar G. Chem. Commun. 2011; 47: 6692
  • 12 Hargreaves MB, Jones BC, Smith DA, Gescher A. Drug Metab. Dispos. 1994; 22: 806
  • 14 Chen YJ, Chen HH. Org. Lett. 2006; 8: 5609
  • 15 Mudithanapelli C, Dhorma LP, Kim M. Org. Lett. 2019; 21: 3098
  • 16 de Lange B, Lambers-Verstappen MH, Schmieder-van de Vondervoort L, Sereinig N, de Rijk R, de Vries AH. M, de Vries JG. Synlett 2006; 3105
  • 17 Flanagan ME, Blumenkopf TA, Brissette WH, Brown MF, Casavant JM, Chang SP, Doty JL, Elliott EA, Fisher MB, Hines M, Kent C, Kudlacz EM, Lillie BM, Magnuson KS, McCurdy SP, Munchhof MJ, Perry BD, Sawyer PS, Strelevitz TJ, Subramanyam C, Sun J, Whipple DA, Changelian PS. J. Med. Chem. 2010; 53: 8468
    • 18a Tye JW, Weng Z, Johns AM, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 9971
    • 18b Cohen T, Cristea I. J. Org. Chem. 1975; 40: 3649
    • 19a Giri R, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 15860
    • 19b Casitas A, Canta M, Sola M, Costas M, Ribas X. J. Am. Chem. Soc. 2011; 133: 19386
    • 19c Ribas X, Güell I. Pure Appl. Chem. 2014; 86: 345
  • 20 Yang K, Qiu Y, Li Z, Wang Z, Jiang S. J. Org. Chem. 2011; 76: 3151
  • 21 Gao J, Bhunia S, Wang K, Gan L, Xia S, Ma D. Org. Lett. 2017; 19: 2809
  • 22 Zhang ZJ, Mao J, Zhu D, Wu F, Chen H, Wan B. Tetrahedron 2006; 62: 4465
  • 23 Shim SC, Huh KT, Park WH. Tetrahedron 1986; 42: 259
  • 24 Sommers AH, Aaland SE. J. Am. Chem. Soc. 1953; 75: 5280
  • 25 Lu B, Li PB, Fu CL, Xue LQ, Lin ZY, Ma SM. Adv. Synth. Catal. 2011; 353: 100
  • 26 Lu ZK, Twieg RJ. Tetrahedron 2005; 61: 903
  • 27 Wang ZY, Ye X, Wei S, Wu P, Zhang A, Sun J. Org. Lett. 2006; 8: 999
  • 28 Finar IL, Hurlock RJ. J. Chem. Soc. 1957; 3024
  • 29 Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T. J. Org. Chem. 2009; 74: 1971
  • 30 dos Santos MS, Gomes AO, Bernardino AM. R, de Souza MC, Khan MA, de Brito MA, Castro HC, Abreu PA, Rodrigues CR, de Leo RM. M, Leon LL, Canto-Cavalheiro MM. J. Braz. Chem. Soc. 2011; 22: 352
  • 31 Reddy VP, Kumar AV, Rao KR. Tetrahedron Lett. 2011; 52: 777
  • 32 Lv X, Wang Z, Bao W. Tetrahedron 2006; 62: 4756
  • 33 Liang L, Li Z, Zhou X. Org. Lett. 2009; 11: 3294
  • 34 Ma HC, Jiang XZ. J. Org. Chem. 2007; 72: 8943
  • 35 Bellina F, Calandri C, Cauteruccio S, Rossi R. Eur. J. Org. Chem. 2007; 2147
  • 36 Khan MA, Rocha EK. Chem. Pharm. Bull. 1977; 25: 3110
  • 37 Wei Y, Sastry GN, Zipse H. J. Am. Chem. Soc. 2008; 130: 3473
  • 38 Hashimoto S, Otani S, Okamoto T, Matsumoto K. Heterocycles 1988; 27: 319
  • 39 Hassner A, Krepski LR, Alexanian V. Tetrahedron 1978; 34: 2069
  • 40 Kauffmann T, Boettcher FP. H. II. Chem. Ber. 1962; 95: 1528
  • 41 Pedersen EB, Carlsen DP. VIII. Synthesis 1978; 844
  • 42 Rasburn JW, Stewart FH. C. J. Chem. Soc. 1957; 2237
  • 43 Abdel-Aziz HA, Abdel-Wahab BF, El-Sharief MA. M. Sh, Abdulla MM. Monatsh. Chem. 2009; 140: 431
  • 44 Ho LA, Raston CL, Stubbs KA. Eur. J. Org. Chem. 2016; 5957
  • 45 Narayan S, Seelhammer T, Gawley RE. Tetrahedron Lett. 2004; 45: 757
  • 46 Choudary BM, Sridhar C, Kantam ML, Venkanna GT, Sreedhar B. J. Am. Chem. Soc. 2005; 127: 9948
  • 47 Xie YX, Pi SF, Wang J, Yin DL, Li JH. J. Org. Chem. 2006; 71: 8324
  • 48 Jia XF, Yang DP, Wang WH, Luo F, Cheng J. J. Org. Chem. 2006; 74: 9470
  • 49 Neukom JD, Aquino AS, Wolfe JP. Org. Lett. 2011; 13: 2196
  • 50 Liu ZJ, Larock RC. J. Org. Chem. 2006; 71: 3198
  • 51 Fors BP, Davis NR, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 5766
  • 52 Rao HH, Fu H, Jiang Y, Zhao Y. J. Org. Chem. 2005; 70: 8107