Subscribe to RSS
DOI: 10.1055/s-0039-1690521
A One-Pot Intramolecular Tandem Michael–Aldol Annulation Reaction for the Synthesis of Chiral Pentacyclic Terpenes
The research reported in this publication was supported in part by the American Heart Association, Heartland Affiliate (0750115Z) and the National Science Foundation, Division of Chemistry (CHE-1662705). This material was based upon work in part supported by the National Science Foundation, Division of Chemistry for the purchase of an NMR spectrometer (1826982 to D.H.H.) and for the purchase of an X-ray diffractometer and the software used in this study (CHE-0923449 to V.W.D.).Publication History
Received: 12 June 2019
Accepted after revision: 19 July 2019
Publication Date:
07 August 2019 (online)


Abstract
A chiral tricyclic terpene possessing a 6,6,6-tricyclic framework and a 3,3-dimethyl-7-oxooctylidenyl side chain undergoes a double ring-closing reaction to give two chiral pentacyclic terpenes in a ratio of 4:3 via an intramolecular Michael addition followed by aldol condensation under basic conditions. Three new stereogenic centers are introduced in the initial Michael annulation reaction. Stereoselective installation of an ethoxycarbonyl group at C17 of the two pentacyclic terpenes separately gives the corresponding highly functionalized pentacyclic terpenoids with seven stereogenic centers. The structures and stereochemistry of key intermediates and products are established through X-ray crystallographic analysis. A mechanism is proposed for explaining the stereochemistry in the Michael annulation reaction.
Key words
1,4-addition - chiral synthesis - double ring-closing - pentacyclic triterpenes - tandem Michael–aldol annulationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690521.
- Supporting Information