Semin Thromb Hemost 2020; 46(05): 637-652
DOI: 10.1055/s-0039-1688491
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Design Considerations and Assays for Hemocompatibility of FDA-Approved Nanoparticles

Amit K. Saha
1   Department of Chemical and Materials Engineering, San José State University, San José, California
2   Department of Biochemistry, Stanford University, Palo Alto, California
,
Min-Yi S. Zhen
3   Department of Biomedical Engineering, San José State University, San José, California
,
Folarin Erogbogbo
3   Department of Biomedical Engineering, San José State University, San José, California
,
Anand K. Ramasubramanian
1   Department of Chemical and Materials Engineering, San José State University, San José, California
› Author Affiliations
Further Information

Publication History

Publication Date:
12 August 2019 (online)

Abstract

Nanoparticles have numerous biomedical applications including, but not limited to, targeted drug delivery, diagnostic imaging, sensors, and implants for a wide range of diseases including cancer, diabetes, heart disease, and tuberculosis. Although the mode of delivery of the nanoparticles depends on the application and the disease, the nanoparticles are often in immediate contact with the systemic circulation either because of intravenous administration or their ability to enter the bloodstream with relative ease or their longer survival time in circulation. Once in circulation, the nanoparticles may elicit unintended hemostatic and inflammatory responses, and hence the design of nanoparticles for therapeutic applications should take broad hemocompatibility concerns into consideration. In this review, we present the principles underlying the structural and functional design of various classes of nanoparticles that are currently approved by the US Food and Drug Administration, categorize these particles based on their interactions with cardiovascular tissues and ensuing adverse events, and also describe various in vitro assays that may be used evaluate their hemocompatibility.

 
  • References

  • 1 Evani SJ, Ramasubramanian AK. Hemocompatibility of nanoparticles. In: Sitharaman B. , ed. Nanobiomaterials Handbook. Boca Raton, FL: CRC Press; 2011. : 31: 1-17
  • 2 Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5 (03) 161-171
  • 3 Svenson S, Prud'homme RK. Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery. Berlin/Heidelberg, Germany: Springer Science & Business Media; 2012: 374
  • 4 Xiao W, Lin J, Li M. , et al. Prolonged in vivo circulation time by zwitterionic modification of magnetite nanoparticles for blood pool contrast agents. Contrast Media Mol Imaging 2012; 7 (03) 320-327
  • 5 Li S, Zou R, Tu Y, Wu J, Landry MP. Cholesterol-directed nanoparticle assemblies based on single amino acid peptide mutations activate cellular uptake and decrease tumor volume. Chem Sci (Camb) 2017; 8 (11) 7552-7559
  • 6 McIlwain C. Abraxane, in xPharm: The Comprehensive Pharmacology Reference. 2008: 1-5
  • 7 Crofskey S. Abraxane the best taxane for metastatic breast cancer?. Inpharma Wkly 2007; 1571: 7
  • 8 Abraxane the best taxane for metastatic breast cancer?. Inpharma Weekly 2007; 1571 (01) 7-8
  • 9 Foss FM. DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma 2000; 1 (02) 110-116 , discussion 117
  • 10 Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 2014; 9: 4357-4373
  • 11 Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33 (10) 2373-2387
  • 12 Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65 (01) 36-48
  • 13 De A, Venkatesh DN. Design and evaluation of liposomal delivery system for L-Asparaginese. JAPS 2012 ;8. DOI: 10.7324/JAPS.2012.2818
  • 14 Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta 2006; 1758 (10) 1633-1640
  • 15 Mohammadi ZA, Aghamiri SF, Zarrabi A, Talaie MR. Liposomal doxorubicin delivery systems: effects of formulation and processing parameters on drug loading and release behavior. Curr Drug Deliv 2016; 13 (07) 1065-1070
  • 16 Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160 (02) 117-134
  • 17 Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J Control Release 2016; 221: 1-8
  • 18 Marsh D. Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams. Biochim Biophys Acta 2010; 1798 (03) 688-699
  • 19 Kralj S, Drofenik M, Makovec D. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups. J Nanopart Res 2010; 13 (07) 2829-2841
  • 20 Kim RH. , et al. Fabrication and microstructure of ZnO-SiO2 nanoparticles by a reverse Micelle and Sol-Gel processing. Mater Sci Forum 2006; 510–511: 790-793
  • 21 Lin TY, Zhang H, Luo J. , et al. Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer. Int J Nanomedicine 2012; 7: 2793-2804
  • 22 Costalat M, David L, Delair T. Reversible controlled assembly of chitosan and dextran sulfate: a new method for nanoparticle elaboration. Carbohydr Polym 2014; 102: 717-726
  • 23 Jiang G. , et al. Enhancing the receptor-mediated cell uptake of PLGA nanoparticle for targeted drug delivery by incorporation chitosan onto the particle surface. J Nanopart Res 2014 ;16(06):
  • 24 Yaghmur A, Rappolt M. Liquid crystalline nanoparticles as drug nanocarriers. In: Fanun M. , ed. Colloids in Drug Delivery. Boca Raton, FL: CRC Press; 2010: 337-353
  • 25 Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 2012; 9 (05) 497-508
  • 26 McClements DJ. Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds. Boca Raton: CRC Press; 2014: 572
  • 27 Zubov VI. Microscopic theory of bulk and surface atomic properties of solids and nanoparticles. Nanostruct Mater 1995; 5 (05) 571-576
  • 28 Prasad T. Researchers examine growth and optical properties of gold nanoparticles in stained glass. MRS Bull 2006; 31 (03) 178-179
  • 29 Laurent S, Mahmoudi M. Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application. Elsevier; 2017: 334
  • 30 Walling MA, Novak JA, Shepard JR. Quantum dots for live cell and in vivo imaging. Int J Mol Sci 2009; 10 (02) 441-491
  • 31 Summers HD, Holton MD, Rees P, Williams PM, Thornton CA. Analysis of quantum dot fluorescence stability in primary blood mononuclear cells. Cytometry A 2010; 77 (10) 933-939
  • 32 Sharma M, Jain T, Singh S, Pandey OP. Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for glucose sensing. AIP Adv 2012 ;2(01). DOI: 10.1063/1.3698310
  • 33 Catherine L, Olivier P. Gold Nanoparticles for Physics, Chemistry and Biology. 2nd ed. Singapore: World Scientific; 2017: 680
  • 34 Hong AR, Kim Y, Lee TS. , et al. Intense red-emitting upconversion nanophosphors (800 nm-driven) with a core/double-shell structure for dual-modal upconversion luminescence and magnetic resonance in vivo imaging applications. ACS Appl Mater Interfaces 2018; 10 (15) 12331-12340
  • 35 Takami S. Surface modification of inorganic nanoparticles by organic functional groups. In: Nanoparticle Technology Handbook. Amsterdam, The Netherlands: Elsevier; 2012: 593-596
  • 36 Töpfer O, Schmidt-Naake G. Surface–functionalized inorganic nanoparticles in miniemulsion polymerization. In: Macromolecular Symposia. New Jersey, NY: Wiley-Blackwell; 2007: 239-248
  • 37 Dykman L, Khlebtsov N. Gold Nanoparticles in Biomedical Applications. Boca Raton, FL: CRC Press; 2017: 332
  • 38 Berce C, Lucan C, Petrushev B. , et al. In vivo assessment of bone marrow toxicity by gold nanoparticle-based bioconjugates in Crl:CD1(ICR) mice. Int J Nanomedicine 2016; 11: 4261-4273
  • 39 Jensen SA, Day ES, Ko CH. , et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 2013; 5 (209) 209ra152
  • 40 Astellas. Ambisome Medical Review. Food and Drug Administration; 1997
  • 41 Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004; 16 (06) 663-669
  • 42 Schneider T, Westermann M, Glei M. In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Arch Toxicol 2017; 91 (11) 3517-3527
  • 43 Meindl C, Kueznik T, Bösch M, Roblegg E, Fröhlich E. Intracellular calcium levels as screening tool for nanoparticle toxicity. J Appl Toxicol 2015; 35 (10) 1150-1159
  • 44 Malvindi MA, De Matteis V, Galeone A. , et al. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 2014; 9 (01) e85835
  • 45 Das GK, Stark DT, Kennedy IM. Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction. Langmuir 2014; 30 (27) 8167-8176
  • 46 Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 2012; 7 (01) 602
  • 47 Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 2011; 85 (07) 743-750
  • 48 Alshatwi AA, Vaiyapuri Subbarayan P, Ramesh E, Al-Hazzani AA, Alsaif MA, Alwarthan AA. Al2O3 nanoparticles induce mitochondria-mediated cell death and upregulate the expression of signaling genes in human mesenchymal stem cells. J Biochem Mol Toxicol 2012; 26 (11) 469-476
  • 49 Grabowski N, Hillaireau H, Vergnaud J. , et al. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm 2015; 482 (1-2): 75-83
  • 50 Xue Y, Zhang T, Zhang B, Gong F, Huang Y, Tang M. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl Toxicol 2016; 36 (03) 352-360
  • 51 Sun L, Li Y, Liu X. , et al. Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol In Vitro 2011; 25 (08) 1619-1629
  • 52 Nemmar A, Beegam S, Yuvaraju P, Yasin J, Shahin A, Ali BH. Interaction of amorphous silica nanoparticles with erythrocytes in vitro: role of oxidative stress. Cell Physiol Biochem 2014; 34 (02) 255-265
  • 53 Shafagh M, Rahmani F, Delirezh N. CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53. Iran J Basic Med Sci 2015; 18 (10) 993-1000
  • 54 Hussain S, Al-Nsour F, Rice AB. , et al. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 2012; 6 (07) 5820-5829
  • 55 Wu Q, Jin R, Feng T. , et al. Iron oxide nanoparticles and induced autophagy in human monocytes. Int J Nanomedicine 2017; 12: 3993-4005
  • 56 Xu Y, Wang L, Bai R, Zhang T, Chen C. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 2015; 7 (38) 16100-16109
  • 57 Kettler K, Giannakou C, de Jong WH, Hendriks AJ, Krystek P. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins. J Nanopart Res 2016; 18 (09) 286
  • 58 Lord MS, Jung M, Teoh WY. , et al. Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials 2012; 33 (31) 7915-7924
  • 59 Sharma M, Salisbury RL, Maurer EI, Hussain SM, Sulentic CE. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line. Nanoscale 2013; 5 (09) 3747-3756
  • 60 Soni D, Gandhi D, Tarale P, Bafana A, Pandey RA, Sivanesan S. Oxidative stress and genotoxicity of zinc oxide nanoparticles to pseudomonas species, human promyelocytic leukemic (HL-60), and blood cells. Biol Trace Elem Res 2017; 178 (02) 218-227
  • 61 Marquardt C, Fritsch-Decker S, Al-Rawi M, Diabaté S, Weiss C. Autophagy induced by silica nanoparticles protects RAW264.7 macrophages from cell death. Toxicology 2017; 379: 40-47
  • 62 Jiang L, Yu Y, Li Y. , et al. Oxidative damage and energy metabolism disorder contribute to the hemolytic effect of amorphous silica nanoparticles. Nanoscale Res Lett 2016; 11 (01) 57
  • 63 Mocan T. Hemolysis as Expression of Nanoparticles-Induced Cytotoxicity in Red Blood Cells. Biotechnology. Molecular Biology and Nanomedicine 2013; 1 (01) 7-12
  • 64 Aseichev AV, Azizova OA, Beckman EM. , et al. Effects of gold nanoparticles on erythrocyte hemolysis. Bull Exp Biol Med 2014; 156 (04) 495-498
  • 65 Love SA, Thompson JW, Haynes CL. Development of screening assays for nanoparticle toxicity assessment in human blood: preliminary studies with charged Au nanoparticles. Nanomedicine (Lond) 2012; 7 (09) 1355-1364
  • 66 Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci 2011; 123 (01) 133-143
  • 67 Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CZ. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 2015; 28 (03) 501-509
  • 68 de Lima JM, Sarmento RR, de Souza JR. , et al. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. BioMed Res Int 2015; 2015: 247965
  • 69 Rahman MA, Ochiai B. Fabrication and hemocompatibility of carboxy-chitosan stabilized magnetite nanoparticles. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 2018; 24 (01) 669-681
  • 70 Loeb SK, Asharani PVN, Valiyaveettil S. . Investigating the Toxicity of Iron(III) Oxide Nanoparticles, Zinc(II) Oxide Nanorods and Multi-Walled Carbon Nanotubes on Red Blood Cells. 15th National Undergraduate Research Opportunities Congress (NUROP) Congress; National University of Singapore, 2010
  • 71 Amruthraj NJ, Preetam Raj JP, Lebel A. Capsaicin-capped silver nanoparticles: its kinetics, characterization and biocompatibility assay. Appl Nanosci 2015; 5 (04) 403-409
  • 72 Naeem A, Alam MT, Khan TA, Husain Q. A biophysical and computational study of concanavalin A immobilized zinc oxide nanoparticles. Protein Pept Lett 2018; 24 (12) 1096-1104
  • 73 Ajdari N, Vyas C, Bogan SL, Lwaleed BA, Cousins BG. Gold nanoparticle interactions in human blood: a model evaluation. Nanomedicine (Lond) 2017; 13 (04) 1531-1542
  • 74 Huang H, Lai W, Cui M. , et al. An evaluation of blood compatibility of silver nanoparticles. Sci Rep 2016; 6: 25518
  • 75 Yang JY, Bae J, Jung A. , et al. Surface functionalization-specific binding of coagulation factors by zinc oxide nanoparticles delays coagulation time and reduces thrombin generation potential in vitro. PLoS One 2017; 12 (07) e0181634
  • 76 Enciso AE, Neun B, Rodriguez J, Ranjan AP, Dobrovolskaia MA, Simanek EE. Nanoparticle effects on human platelets in vitro: a comparison between PAMAM and triazine dendrimers. Molecules 2016; 21 (04) 428
  • 77 Samuel SP, Santos-Martinez MJ, Medina C. , et al. CdTe quantum dots induce activation of human platelets: implications for nanoparticle hemocompatibility. Int J Nanomedicine 2015; 10: 2723-2734
  • 78 Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C. Nanoparticle-based dressing: the future of wound treatment?. Trends Biotechnol 2017; 35 (08) 770-784
  • 79 Dreher K, Shafer T, Strickland J, Polk W. , et al. In vitro cardiotoxicity screening of silver and metal oxide nanoparticles using human induced pluripotent stem cell-derived cardiomyocytes. San Diego, CA: Society of Toxicology; 2015
  • 80 Guerrero-Beltrán CE, Bernal-Ramírez J, Lozano O. , et al. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca2+ handling in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 312 (04) H645-H661
  • 81 Chen J, Dong X, Xin Y, Zhao M. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat Toxicol 2011; 101 (3-4): 493-499
  • 82 Mohamed HRH. Attenuation of nano-TiO2 induced genotoxicity, mutagenicity and apoptosis by chlorophyllin in mice cardiac cells. Int J Sci Res (Ahmedabad) 2014; 3 (06) 2625-2636
  • 83 Savi M, Rossi S, Bocchi L. , et al. Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part Fibre Toxicol 2014; 11: 63
  • 84 Ramirez-Lee MA, Aguirre-Bañuelos P, Martinez-Cuevas PP. , et al. Evaluation of cardiovascular responses to silver nanoparticles (AgNPs) in spontaneously hypertensive rats. Nanomedicine (Lond) 2018; 14 (02) 385-395
  • 85 Bostan HB, Rezaee R, Valokala MG. , et al. Cardiotoxicity of nano-particles. Life Sci 2016; 165: 91-99
  • 86 Sun X, Shi J, Zou X, Wang C, Yang Y, Zhang H. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization. J Hazard Mater 2016; 317: 570-578
  • 87 Li CH, Shyu MK, Jhan C. , et al. Gold nanoparticles increase endothelial paracellular permeability by altering components of endothelial tight junctions, and increase blood-brain barrier permeability in mice. Toxicol Sci 2015; 148 (01) 192-203
  • 88 Apopa PL, Qian Y, Shao R. , et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 2009; 6: 1
  • 89 Setyawati MI, Tay CY, Bay BH, Leong DT. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017; 11 (05) 5020-5030
  • 90 Wolf-Grosse S, Rokstad AM, Ali S. , et al. Iron oxide nanoparticles induce cytokine secretion in a complement-dependent manner in a human whole blood model. Int J Nanomedicine 2017; 12: 3927-3940
  • 91 Tirtaatmadja N, Mortimer G, Ng EP. , et al. Nanoparticles-induced inflammatory cytokines in human plasma concentration manner: an ignored factor at the nanobio-interface. J Indian Chem Soc 2015; 12 (02) 317-323
  • 92 Tsugita M, Morimoto N, Nakayama M. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses. Part Fibre Toxicol 2017; 14 (01) 11
  • 93 Murphy A, Casey A, Byrne G, Chambers G, Howe O. Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes. J Appl Toxicol 2016; 36 (10) 1311-1320
  • 94 Zhang Y, Du W, Smuda K, Georgieva R, Baumler H, Gao C. Inflammatory activation of human serum albumin- or ovalbumin-modified chitosan particles to macrophages and their immune response in human whole blood. J Mater Chem B Mater Biol Med 2018; 6 (19) 3096-3106
  • 95 Singh P, Ahn S, Kang JP. , et al. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artif Cells Nanomed Biotechnol 2017; 1-11
  • 96 Gonzalez-Carter DA, Leo BF, Ruenraroengsak P. , et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep 2017; 7: 42871
  • 97 García CP, Sumbayev V, Gilliland D. , et al. Microscopic analysis of the interaction of gold nanoparticles with cells of the innate immune system. Sci Rep 2013; 3: 1326
  • 98 Claudia M, Kristin Ö, Jennifer O, Eva R, Eleonore F. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro. Toxicology 2017; 378: 25-36
  • 99 Mutzke E, Chomyshyn E, Nguyen KC, Blahoianu M, Tayabali AF. Phagocytosis-coupled flow cytometry for detection and size discrimination of anionic polystyrene particles. Anal Biochem 2015; 483: 40-46
  • 100 Babin K, Goncalves DM, Girard D. Nanoparticles enhance the ability of human neutrophils to exert phagocytosis by a Syk-dependent mechanism. Biochim Biophys Acta 2015; 1850 (11) 2276-2282
  • 101 Liu XS, Jin Q, Ji Y, Ji J. Minimizing nonspecific phagocytic uptake of biocompatible gold nanoparticles with mixed charged zwitterionic surface modification. J Mater Chem 2012; 22 (05) 1916-1927
  • 102 Qie Y, Yuan H, von Roemeling CA. , et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 2016; 6: 26269
  • 103 Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013; 339 (6122): 971-975
  • 104 Kim YH, Min KH, Wang Z. , et al. Development of sialic acid-coated nanoparticles for targeting cancer and efficient evasion of the immune system. Theranostics 2017; 7 (04) 962-973
  • 105 Anselmo AC, Zhang M, Kumar S. , et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 2015; 9 (03) 3169-3177
  • 106 Sheen MR, Fiering S. Exploiting uptake of nanoparticles by phagocytes for cancer treatment. Methods Mol Biol 2017; 1530: 355-367
  • 107 Maitz MF, Sperling C, Wongpinyochit T, Herklotz M, Werner C, Seib FP. Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. Nanomedicine (Lond) 2017; 13 (08) 2633-2642
  • 108 Hu CM, Fang RH, Wang KC. , et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015; 526 (7571): 118-121
  • 109 Quach QH, Kong RLX, Kah JCY. Complement activation by PEGylated gold nanoparticles. Bioconjug Chem 2018; 29 (04) 976-981
  • 110 Chanan-Khan A, Szebeni J, Savay S. , et al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 2003; 14 (09) 1430-1437
  • 111 Neun BW, Ilinskaya AN, Dobrovolskaia MA. Analysis of complement activation by nanoparticles. Methods Mol Biol 2018; 1682: 149-160
  • 112 Abraxis BioScience. Abraxane Medical Review. Food and Drug Administration; 2005
  • 113 Eisai OMR. Food and Drug Administration; 1999
  • 114 Pharmaceuticals V, Review VM. Food and Drug Administration; 2000
  • 115 Dey Laboratories. CuroSurf Medical Review. Food and Drug Administration; 1999
  • 116 Pacira DepoDur. Medical Review. Food and Drug Administration; 2004
  • 117 Pacira, DepoCyt. Medical Review. Food and Drug Administration; 1999
  • 118 Janssen DMR. Food and Drug Administration; 1995
  • 119 Marqibo T. Medical review. Food and Drug Administration; 2012
  • 120 Pharmaceuticals M, Review OM. Food and Drug Administration; 2015
  • 121 Celator VMR. Food and Drug Administration; 2017
  • 122 Teva CMR. Food and Drug Administration; 1996
  • 123 Atrix EMR. Food and Drug Administration; 2004
  • 124 Pharmaceuticals V, Review MM. Food and Drug Administration; 2004
  • 125 Roche MMR. Food and Drug Administration; 2007
  • 126 Amgen NMR. Food and Drug Administration; 2002
  • 127 Roche PEGASYS. (peginterferon alfa-2a), Package Insert. Food and Drug Administration; 2002
  • 128 Schering. PegIntron Medical Review. Food and Drug Administration; 2001
  • 129 Geltex RMR. Food and Drug Administration; 1998
  • 130 Sigma-Tau O. Food and Drug Administration; 1994
  • 131 Horizon KMR. Food and Drug Administration; 2010
  • 132 Biogen PMR. Food and Drug Administration; 2014
  • 133 King AMR. Food and Drug Administration; 2002
  • 134 Merck EMR. Food and Drug Administration; 2015
  • 135 Novartis. Focalin XR Medical Review. Food and Drug Administration; 2005
  • 136 Janssen ISMR. Food and Drug Administration; 2009
  • 137 Pharmaceutical P. Megace ES Medical Review. Food and Drug Administration; 2005
  • 138 Pfizer RMR. Food and Drug Administration; 1999
  • 139 Eagle RMR. Food and Drug Administration; 2014
  • 140 Pharmaceuticals AMAG. Feraheme Medical Review. Food and Drug Administration; 2009
  • 141 Aventis S, Review FM. Food and Drug Administration; 1999
  • 142 Allergan, INFeD Medical Review. Food and Drug Administration; 1974
  • 143 Luitpold VMR. Food and Drug Administration; 2000