Subscribe to RSS
DOI: 10.1055/s-0038-1677007
Acute Visual Disorders—What Should the Neurologist Know?
Publication History
Publication Date:
11 February 2019 (online)
Abstract
Normal vision requires coordination of precisely controlled and coordinated eye movements and normal function of a large cortical and subcortical sensory network. Given the required precision of the system and wide anatomic distribution of the motor and sensory visual systems, vision can be disrupted by a variety of central and peripheral nervous system disorders. While many of these may be relatively benign or have no proven therapy, several may be isolated presentations or harbingers of more serious neurologic conditions. Both monocular and binocular vision losses may be isolated presentations of stroke or its equivalent. Other etiologies of monocular vision loss may represent the initial presentation of potentially disabling conditions. Binocular diplopia, caused by impaired movement of one or both eyes, may represent a condition with no acute therapy and a benign natural history, or a progressive potentially life-threatening syndrome. Most people are heavily reliant upon vision, so that even a subtle change in vision due to disturbed afferent or efferent pathways is invariably noticed, and presentation to the emergency department for eye symptoms is common. The accurate evaluation of these patients in the acute setting is essential to identify the patients requiring immediate testing or treatment.
-
References
- 1 Rodriguez M, Siva A, Cross SA, O'Brien PC, Kurland LT. Optic neuritis: a population-based study in Olmsted County, Minnesota. Neurology 1995; 45 (02) 244-250
- 2 Soelberg K, Jarius S, Skejoe H. , et al. A population-based prospective study of optic neuritis. Mult Scler 2017; 23 (14) 1893-1901
- 3 Beck RW, Cleary PA, Anderson Jr MM. , et al; The Optic Neuritis Study Group. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N Engl J Med 1992; 326 (09) 581-588
- 4 Beck RW, Trobe JD, Moke PS. , et al; Optic Neuritis Study Group. High- and low-risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: experience of the Optic Neuritis Treatment Trial. Arch Ophthalmol 2003; 121 (07) 944-949
- 5 Optic Neuritis Study Group. Multiple sclerosis risk after optic neuritis: final Optic Neuritis Treatment Trial follow-up. Arch Neurol 2008; 65 (06) 727-732
- 6 Wan MJ, Adebona O, Benson LA, Gorman MP, Heidary G. Visual outcomes in pediatric optic neuritis. Am J Ophthalmol 2014; 158 (03) 503.e2-507.e2
- 7 Adesina O-OO, Scott McNally J, Salzman KL. , et al. Diffusion-weighted imaging and post-contrast enhancement in differentiating optic neuritis and non-arteritic anterior optic neuropathy. Neuroophthalmology 2017; 42 (02) 90-98
- 8 Morrow SA, Fraser JA, Day C. , et al. Effect of treating acute optic neuritis with bioequivalent oral vs intravenous corticosteroids: a randomized clinical trial. JAMA Neurol 2018; 75 (06) 690-696
- 9 Lim Y-M, Pyun SY, Lim HT, Jeong IH, Kim K-K. First-ever optic neuritis: distinguishing subsequent neuromyelitis optica from multiple sclerosis. Neurol Sci 2014; 35 (05) 781-783
- 10 Levin MH. Advances in neuromyelitis optica: take them to the clinic. J Neuroophthalmol 2017; 37 (03) 300-302
- 11 Merle H, Olindo S, Jeannin S. , et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol 2012; 130 (07) 858-862
- 12 Chen JJ, Flanagan EP, Jitprapaikulsan J. , et al. Myelin oligodendrocyte glycoprotein antibody-positive optic neuritis: clinical characteristics, radiologic clues, and outcome. Am J Ophthalmol 2018; 195: 8-15
- 13 Purvin V, Sundaram S, Kawasaki A. Neuroretinitis: review of the literature and new observations. J Neuroophthalmol 2011; 31 (01) 58-68
- 14 Bhatti MT, Lee MS. Should patients with bartonella neuroretinitis receive treatment?. J Neuroophthalmol 2014; 34 (04) 412-416
- 15 Sadda SR, Nee M, Miller NR, Biousse V, Newman NJ, Kouzis A. Clinical spectrum of posterior ischemic optic neuropathy. Am J Ophthalmol 2001; 132 (05) 743-750
- 16 Smetana GW, Shmerling RH. Does this patient have temporal arteritis?. JAMA 2002; 287 (01) 92-101
- 17 Nesher G, Berkun Y, Mates M. , et al. Risk factors for cranial ischemic complications in giant cell arteritis. Medicine (Baltimore) 2004; 83 (02) 114-122
- 18 Parikh M, Miller NR, Lee AG. , et al. Prevalence of a normal C-reactive protein with an elevated erythrocyte sedimentation rate in biopsy-proven giant cell arteritis. Ophthalmology 2006; 113 (10) 1842-1845
- 19 Hayreh SS, Biousse V. Treatment of acute visual loss in giant cell arteritis: should we prescribe high-dose intravenous steroids or just oral steroids?. J Neuroophthalmol 2012; 32 (03) 278-287
- 20 Saxena R, Singh D, Sharma M, James M, Sharma P, Menon V. Steroids versus no steroids in nonarteritic anterior ischemic optic neuropathy: a randomized controlled trial. Ophthalmology 2018; 125 (10) 1623-1627
- 21 Biousse V, Newman NJ. Ischemic optic neuropathies. N Engl J Med 2015; 372 (25) 2428-2436
- 22 Sacco RL, Kasner SE, Broderick JP. , et al; American Heart Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular and Stroke Nursing; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Council on Nutrition, Physical Activity and Metabolism. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44 (07) 2064-2089
- 23 Varma DD, Cugati S, Lee AW, Chen CS. A review of central retinal artery occlusion: clinical presentation and management. Eye (Lond) 2013; 27 (06) 688-697
- 24 Hayreh SS, Zimmerman MB. Fundus changes in branch retinal arteriolar occlusion. Retina 2015; 35 (10) 2060-2066
- 25 Biousse V, Nahab F, Newman NJ. Management of acute retinal ischemia: follow the guidelines!. Ophthalmology 2018; 125 (10) 1597-1607
- 26 Schumacher M, Schmidt D, Jurklies B. , et al; EAGLE-Study Group. Central retinal artery occlusion: local intra-arterial fibrinolysis versus conservative treatment, a multicenter randomized trial. Ophthalmology 2010; 117 (07) 1367.e1-1375.e1
- 27 Pielen A, Pantenburg S, Schmoor C. , et al; EAGLE Study Group. Predictors of prognosis and treatment outcome in central retinal artery occlusion: local intra-arterial fibrinolysis vs. conservative treatment. Neuroradiology 2015; 57 (10) 1055-1062
- 28 Dumitrascu OM, Shen JF, Kurli M. , et al. Is intravenous thrombolysis safe and effective in central retinal artery occlusion? A critically appraised topic. Neurologist 2017; 22 (04) 153-156
- 29 Rowe FJ, Wright D, Brand D. , et al. A prospective profile of visual field loss following stroke: prevalence, type, rehabilitation, and outcome. BioMed Res Int 2013; 2013: 719096
- 30 Russell MB, Olesen J. A nosographic analysis of the migraine aura in a general population. Brain 1996; 119 (Pt 2): 355-361
- 31 Shankar J, Banfield J. Posterior reversible encephalopathy syndrome: a review. Can Assoc Radiol J 2017; 68 (02) 147-153
- 32 Coffeen P, Guyton DL. Monocular diplopia accompanying ordinary refractive errors. Am J Ophthalmol 1988; 105 (05) 451-459
- 33 Manchandia AM, Demer JL. Sensitivity of the three-step test in diagnosis of superior oblique palsy. J AAPOS 2014; 18 (06) 567-571
- 34 Hernowo A, Eggenberger E. Skew deviation: clinical updates for ophthalmologists. Curr Opin Ophthalmol 2014; 25 (06) 485-487
- 35 Kung NH, Van Stavern GP. Isolated ocular motor nerve palsies. Semin Neurol 2015; 35 (05) 539-548
- 36 Hoi C-P, Chen Y-T, Fuh J-L, Yang C-P, Wang S-J. Increased risk of stroke in patients with isolated third, fourth, or sixth cranial nerve palsies: a nationwide cohort study. Cerebrovasc Dis 2016; 41 (5–6): 273-282
- 37 Tamhankar MA, Biousse V, Ying G-S. , et al. Isolated third, fourth, and sixth cranial nerve palsies from presumed microvascular versus other causes: a prospective study. Ophthalmology 2013; 120 (11) 2264-2269
- 38 Klein Hesselink T, Gutter M, Polling JR. Neurological imaging in acquired cranial nerve palsy: ophthalmologists vs. neurologists. Strabismus 2017; 25 (03) 134-139
- 39 Schultz KL, Lee AG. Diagnostic yield of the evaluation of isolated third nerve palsy in adults. Can J Ophthalmol 2007; 42 (01) 110-115
- 40 Jacobson DM, Trobe JD. The emerging role of magnetic resonance angiography in the management of patients with third cranial nerve palsy. Am J Ophthalmol 1999; 128 (01) 94-96
- 41 Margolin E, Lam CTY. Approach to a patient with diplopia in the emergency department. J Emerg Med 2018; 54 (06) 799-806
- 42 Henderson AD, Miller NR. Carotid-cavernous fistula: current concepts in aetiology, investigation, and management. Eye (Lond) 2018; 32 (02) 164-172
- 43 Yeh S, Foroozan R. Orbital apex syndrome. Curr Opin Ophthalmol 2004; 15 (06) 490-498
- 44 Nerrant E, Tilikete C. Ocular motor manifestations of multiple sclerosis. J Neuroophthalmol 2017; 37 (03) 332-340
- 45 Jeong S-H, Kim EK, Lee J, Choi K-D, Kim JS. Patterns of dissociate torsional-vertical nystagmus in internuclear ophthalmoplegia. Ann N Y Acad Sci 2011; 1233: 271-278
- 46 Al-Haidar M, Benatar M, Kaminski HJ. Ocular myasthenia. Neurol Clin 2018; 36 (02) 241-251
- 47 Nagia L, Lemos J, Abusamra K, Cornblath WT, Eggenberger ER. Prognosis of ocular myasthenia gravis: retrospective multicenter analysis. Ophthalmology 2015; 122 (07) 1517-1521
- 48 Kaymakamzade B, Selcuk F, Koysuren A, Colpak AI, Mut SE, Kansu T. Pupillary involvement in Miller Fisher syndrome. Neuroophthalmology 2013; 37 (03) 111-115
- 49 Puma A, Benoit J, Sacconi S, Uncini A. Miller Fisher syndrome, Bickerstaff brainstem encephalitis and Guillain-Barré syndrome overlap with persistent non-demyelinating conduction blocks: a case report. BMC Neurol 2018; 18 (01) 101
- 50 Lam BL, Thompson HS, Walls RC. Effect of light on the prevalence of simple anisocoria. Ophthalmology 1996; 103 (05) 790-793
- 51 Kanagalingam S, Miller NR. Horner syndrome: clinical perspectives. Eye Brain 2015; 7: 35-46
- 52 Moeller JJ, Maxner CE. The dilated pupil: an update. Curr Neurol Neurosci Rep 2007; 7 (05) 417-422
- 53 Wall M, McDermott MP, Kieburtz KD. , et al; NORDIC Idiopathic Intracranial Hypertension Study Group Writing Committee. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA 2014; 311 (16) 1641-1651
- 54 Thambisetty M, Lavin PJ, Newman NJ, Biousse V. Fulminant idiopathic intracranial hypertension. Neurology 2007; 68 (03) 229-232
- 55 Liu GT, Glaser JS, Schatz NJ. High-dose methylprednisolone and acetazolamide for visual loss in pseudotumor cerebri. Am J Ophthalmol 1994; 118 (01) 88-96
- 56 Sachdeva V, Vasseneix C, Hage R. , et al. Optic nerve head edema among patients presenting to the emergency department. Neurology 2018; 90 (05) e373-e379
- 57 Lehnert BE, Rahbar H, Relyea-Chew A, Lewis DH, Richardson ML, Fink JR. Detection of ventricular shunt malfunction in the ED: relative utility of radiography, CT, and nuclear imaging. Emerg Radiol 2011; 18 (04) 299-305
- 58 Acheson JF. Idiopathic intracranial hypertension and visual function. Br Med Bull 2006; 79–80 (01) 233-244
- 59 Saber Tehrani AS, Kattah JC, Kerber KA. , et al. Diagnosing stroke in acute dizziness and vertigo: pitfalls and pearls. Stroke 2018; 49 (03) 788-795
- 60 Kattah JC, Talkad AV, Wang DZ, Hsieh Y-H, Newman-Toker DE. HINTS to diagnose stroke in the acute vestibular syndrome: three-step bedside oculomotor examination more sensitive than early MRI diffusion-weighted imaging. Stroke 2009; 40 (11) 3504-3510
- 61 Newman-Toker DE, Kerber KA, Hsieh Y-H. , et al. HINTS outperforms ABCD2 to screen for stroke in acute continuous vertigo and dizziness. Acad Emerg Med 2013; 20 (10) 986-996
- 62 Kattah JC. The spectrum of vestibular and ocular motor abnormalities in thiamine deficiency. Curr Neurol Neurosci Rep 2017; 17 (05) 40