Nervenheilkunde 2018; 37(10): 679-688
DOI: 10.1055/s-0038-1673597
Morbus Wilson
Georg Thieme Verlag KG Stuttgart · New York

Differenzialdiagnose des Morbus Wilson

Differential diagnosis of Wilson’s disease
W. Hermann
1   SRO AG Langenthal, Neurologie
,
C. Tinta
2   Klinik für Neurologie, Klinikum Chemnitz gGmbH
› Author Affiliations
Further Information

Publication History

eingegangen 05 May 2018

angenommen 20 May 2018

Publication Date:
04 October 2018 (online)

Zusammenfassung

Nach dem Stellen der Verdachtsdiagnose Morbus Wilson gilt es, diese zu bestätigen. Bis zum eindeutigen Nachweis bzw. bei Ausschluss einer autosomal-rezessiven Störung des hepatischen Kupfertransporters ATP 7B sind Differenzialdiagnosen anhand der vorliegenden Befunde zu prüfen. Laborchemische Parameter des Kupferstoffwechsels weisen außer auf nicht relevante Normabweichungen auch auf andere Störungen im Kupferstoffwechsel hin.

Neben bekannten Erkrankungen wie den Morbus Menkes, das Occipital Horn Syndrom (OHS), die Indian childhood cirrhosis (ICC) und den Coeruloplasminmangel werden neu entdeckte Störungen berücksichtigt. Dazu gehören das MEDNIK-Syndrom, das Huppke-Brendel-Syndrom und der Chaperonmangel CCS. Einen weiteren Schwerpunkt stellen alterskorrelierte Differenzialdiagnosen des kindlichen Ikterus und der Anämie sowie extrapyramidalmotorischer Bewegungsstörun-gen dar. Der Kayser-Fleischer-Kornealring wird als klassische ophthalmologische Manifestation relativiert. Mit der neu beschriebenen Manganspeichererkrankung besteht eine weitere seltene Metallstoffwechselstörung, die eine dem Morbus Wilson ähnliche Symptomatik hat.

Wie diese Übersicht zeigt, ordnet sich der Morbus Wilson in ein weites Spektrum internistischer und neurologischer Krankheitsbilder mit Ikterus, Anämie und EPS ein. Auch neu entdeckte Krankheitsbilder des Mangan- und Kupferstoffwechsels sind relevant.

Summary

After a tentative diagnosis of Wilson’s disease has been made it has to be confirmed. Until the unequivocal proof or the exclusion of an autosomal recessive disorder of the hepatitis copper transporter ATP 7B differential diagnoses have to be examined based on the existing findings. Laboratory-chemical parameters of the copper metabolism, except for irrelevant deviations from the normal value, point to other disorders in the copper metabolism.

In addition to known diseases like Menkes syndrome, occipital horn syndrome (OHS), Indian childhood cirrhosis (ICC) and coeruloplasmin deficiency newly discovered disorders are taken into account. These include the MEDNIK-syndrome, the Huppke-Brendelsyndrome and chaperone deficiency CCS. Another main focus is on differential diagnoses of childhood icterus correlated with age and anemia as well as disorders of the extrapyramidal motor system. The Kayser-Fleischer ring is relativized as classical ophthalmological manifestation. With the recently described manganese storage disorder there is an additional metabolism disorder which shows symptoms similar to Wilson’s disease.

As this overview shows, Wilson’s disease fits into a broad spectrum of internal and neurological disease pattern with icterus, anemia and EPS. Newly discovered clinical pictures of the manganese and copper metabolism are also relevant.

 
  • Literatur

  • 1 Cuthbert AJ. Wilson´s Disease: A new gene and an animal model for an old disease. J Investig Med 1995; 43 (04) 323-336.
  • 2 Maier-Dobersberger T. Morbus Wilson. Diagnosestellung mit konventionellen und molekularbiologischen Methoden. Deutsch med Wschr 1999; 124: 493-496.
  • 3 Brewer GJ. Wilson’s disease: A clinician`s guide to recognition, diagnosis, and mangement. Boston Dordrecht London: Kluwer Academic Publishers; 2001
  • 4 Hermann W, Huster D. Diagnostik des Morbus Wilson. Nervenarzt 2018; 89 (02) 115-122.
  • 5 Hermann W, Huster D, Ransmayr G. et al. Morbus Wilson. In: Leitlinien für Diagnostik und Therapie in der Neurologie. Diener H, Weimar C. (eds.). Stuttgart; Thieme: 2012: 200-209.
  • 6 Roberts EA, Cox DW. Wilson disease. Bailliere`s Clinical Gastroenterology 1998; 12 (02) 237-256.
  • 7 Abuduxikuer K, Li LT, Qiu YL. Wilson disease with hepatic presentation in an eight-month-old boy. World J Gastroenterol 2015; 21 (29) 8981-84.
  • 8 Ala A, Borjigin J, Rochwarger A. et al. Wilson disease in septuagenarian siblings: Raising the bar for diagnosis. Hepatology 2005; 41: 668-670.
  • 9 Ferenci P, Czlonkowska A, Merle U. et al. LateOnset Wilson’s Disease. Gastroenterology 2007; 132: 1294-98.
  • 10 Hermann W, Tinta C. Klassifikation des Morbus Wilson. Nervenheilkunde 2018; 37: 426-432.
  • 11 Hermann W, Hennig C, Hoffmann J. Fehldiagnose eines Morbus Wilson trotz positiver Genetik. Nervenarzt. 2018 im Druck.
  • 12 Mercer JFB. Gene regulation by copper and the basis for copper homeostasis. Nutrition 1997; 13: 48-49.
  • 13 Lutsenko S, Gupta A, Burkhead Jl. et al. Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Archives of Biochemistry and Biophysics 2008; 476 (01) 22-32.
  • 14 Valentine JS, Gralla EB. Biochemistry – delivering copper inside yeast and human cells. Science 1997; 278: 817-818.
  • 15 Ferenci P, Zollner G, Trauner M. Hepatic transport systems. J Gastroenterol Hepatol 2002; 17: 105-112.
  • 16 Gollan JL. Copper metabolism, Wilson`s disease, and hepatic copper toxicosis. In: Hepatology – A textbook of liver disease. Zankim D, Boyer T D. (Hrsg). Philadelphia: Saunders; 2nd edition. 1990: 1249-1272.
  • 17 Cox DW. Molecular advances in Wilson disease. In: Prog Liver Dis (United States) 1996; 14: 245-264.
  • 18 Harris ED. Copper transport: an overview (review).. Proc Soc Exp Biol Med 1991; 196: 130-140.
  • 19 Stremmel W, Niederau C, Strohmeyer G. Genetisch determinierte Lebererkrankungen, Teil II: Morbus Wilson. DIA-GM 1990; 10: 953.
  • 20 Thomas L. Labor und Diagnose. TH-Books Verlagsgesellschaft mbH. Frankfurt/Main. 1998
  • 21 Gressner AM, Arndt T. Lexikon der Medizinischen Laboratoriumsdiagnostik. Berlin Heidelberg: Springer; 2013
  • 22 Yoshida K, Furihata K, Takeda S. et al. A mutation in the coeruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 1995; 09: 267-272.
  • 23 Ferenci P. Pathophysiology and clinical features of Wilson disease. Metab Brain Dis 2004; 19: 229-239.
  • 24 Ferenci P, Steindl-Munda P, Vogel W. et al. Diagnostic value of quantitative hepatic copper determination in patients with Wilson’s disease. Clin Gastroenterol Hepatol 2005; 03: 811-818.
  • 25 DiDonato M, Bibudhendra S. Copper transport and its alterations in Menkes and Wilson diseases. Biochemica et Biophysica Acta 1360. Amsterdam: Elsevier; 1997: 3-16.
  • 26 Cuthbert JA. Wilson`s disease. Update of a systematic disorder with protean manifestations. Gastroenterology Clinics of North America 1998; 27 (03) 655-681.
  • 27 Hamza I, Schaefer M, Klomp LW. et al. Interaction of copper chaperone HAH1 with the Wilson dis-ease protein is essential for copper homeostasis. Proc Natl Acad Sci USA 1999; 96: 13363-68.
  • 28 Harrison MD, Jones CE, Solio M. et al. Intracellular copper routing. The role of copper chaperons. Trends Biochem Sci 2000; 25: 29-32.
  • 29 Roelofsen H, Wolters H, van Luyn MJA. et al. Copper-induced apical trafficking of ATP 7B in polarized hepatoma cells provides a mechanism of biliary copper excretion. Gastroenterology 2000; 119: 782-793.
  • 30 Burstein E, Ganesh L, Dick RD. et al. A novel role for XIAP in copper homeostasis through regulation of MURR1. The EMBO Journal 2004; 23: 244-254.
  • 31 Klomp AEM, van de Sluis B, Klomp LWJ. et al. The ubiquitously expressed MURR1 is absent in canine copper toxicosis. J Hepatol 2003; 39: 703-709.
  • 32 Tao TY, Liu F, Klomb L. et al. The copper toxicosis gene product MURR1 directly interacts with the Wilson disease protein. J Biol Chem 2003; 278: 41593-96.
  • 33 Vonk WIM, Kakkar V, Bartuzi P. et al. The Copper Metabolism MURR1 Domain Protein 1 (COMMD1) Modulates the Aggregation of Misfolded Protein Species in a Client-Specific Manner. PLOS ONE 2014; 09 (04) e92408.
  • 34 Vaupel P, Scheible HG, Mutschler E. Anatomie, Physiologie, Pathophysiologie des Menschen. Stuttgart: Wissenschaftliche Verlagsgesellschaft 7. Auflage; 2015
  • 35 Jennifer McDowall/Interpro: ATP Synthase: The ATPase-Family..
  • 36 Tsivkovskii R, Eisses JF, Kaplan JH. et al. Functional Properties of the Copper-transporting ATPase ATP7B (The Wilson’s Disease Protein) Expressed in Insect Cells. The Journal of Biological Chemistry 2002; 277: 976-983.
  • 37 Bull PC, Thomas GR, Rommens JM. et al. The Wilson disease gene is a putative copper transporting P-Type ATPase similar to the Menkes gene. Nature Genetics 1993; 05: 327-337.
  • 38 Tanzi RE, Petrukhin K, Chernov I. et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genezics 1993; 05: 343-350.
  • 39 Bowcock AM, Farrer LA, Hebert JM. et al. Eight closely linked loci place the Wilson disease locus within 13q14-q21. Am J Hum Genet 1988; 43: 664-674.
  • 40 Carafoli E. P-Typ ATPases. Introduction. J Bioenerg Biomembr 1992; 24: 245-247.
  • 41 Vulpe DC, Packman S. Cellular copper transport. Annu Rev Nutr 1995; 15: 293-322.
  • 42 Kaler SG. ATP 7A-Related copper transport diseases –Emerging concepts and future trends. Nat Rev Neurol 2011; 07 (01) 15-29.
  • 43 Bahi-Buisson N, Kaminska A, Nabbout R. et al. Epilepsy in Menkes disease: analysis of clinical stages. Epilepsia 2006; 47 (02) 380-86.
  • 44 Kaler SG. Metabolic and molecular bases of Menkes disease and occipital horn syndrome. Pediatr Dev Pathol 1998; 01 (01) 85-98.
  • 45 Kaler SG, Holmes CS, Goldstein DS. et al. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med 2008; 358 (06) 605-614.
  • 46 Kaler SG, Goldstein DS, Holmes C. et al. Plasma and cerbrospinal fluid neurochemical pattern in Menkes Disease. Ann Neurol 1993; 33: 171-175.
  • 47 Tang J, Robertson SP, Lem KE. et al. Functional copper transport explains neurologic sparing in occipital horn syndrome. Genet Med 2006; 08: 711-718.
  • 48 Kennerson ML, Nicholson GA, Kaler SG. et al. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet 2010; 86: 343-352.
  • 49 Yi L, Donsante A, Kennerson ML. et al. Altered intra-cellular localization and valosin-containing protein (p97 VCP) interaction underlie ATP7A-related distal motor neuropathy. Hum Mol Genet 2012; 21: 1794-1807.
  • 50 Barthel H, Hermann W, Kluge R. et al. Concordant preand postsynaptic deficits of dopaminergic neurotransmission in neurologic Wilson disease. Am J Neuroradiol 2003; 24 (02) 234-238.
  • 51 Barthel H, Sorger D, Kühn HJ. et al. Differential alteration of nigrostriatal dopaminergic system in Wilson`s disease investigated with (123 I)ß-CIT and high resolution SPET. Eur J Nucl Med 2001; 28 (11) 1656-63.
  • 52 Nayak NC, Chitale AR. Indian childhood cirrhosis (ICC) & ICC-like diseases: The changing scenario of facts versus notions. The Indian Journal of Medical Research 2013; 137 (06) 1029-42.
  • 53 Tanner MS. Role of copper in Indian childhood cirrhosis. Am J Clin Nutr 1998; 67 (05) 1074-81.
  • 54 Freed EF, Prieto JL, McCann Kl. et al. NOL11, Implicated in the Pathogenesis of North American Indian Childhood Cirrhosis, Is Required for PrerRNA Transcription and Processing. PLoS Genet 2012; 08 (08) e1002892.
  • 55 Martinelli D, Travaglini L, Drouin CA. et al. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. Brain 2013; 136 (Pt 3): 872-881.
  • 56 Montpetit A, Cote S, Brustein E. et al. Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLoS Genet 2008; 04 (12) e1000296.
  • 57 Leroy P, Meyer F, Vaessen S. et al. Dystonia 12: A rare and difficult diagnosis. Arch Pediatr 2017; 24 (07) 637-639.
  • 58 Rosewich H, Baethmann M, Ohlenbusch A. et al. A novel ATP1A3 mutation with unique clinical presentation. J Neurol Sci 2014; 341 (1–2): 133-135.
  • 59 Hampshire D, Roberts E, Crow Y. et al. KuforRakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet 2001; 38 (10) 680-682.
  • 60 Prashanth LK, Murugan S, Kamath V. et al. First Report of Kufor-Rakeb Syndrome (PARK 9) from India, and a Novel Nonsense Mutation in ATP13A2 Gene. Mov Disord Clin Pract 2015; 02 (03) 326-327.
  • 61 Huppke P, Brendel C, Korenke GC. et al. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase. Hum Mutation 2012; 33: 1207-15.
  • 62 Aspin N, Sass-Kortsak CopperA. In: Bronner F, Coburn JW. (eds.) Disorders of mineral metabolism. Vol I: Trace minerals. New York: Academic Press; 1981
  • 63 Lindner MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr 1996; 63: 797S-811S.
  • 64 Kreutzig T. Kurzlehrbuch Biochemie. München: Urban & Fischer-Verlag/Elsevier GmbH; 2006
  • 65 Kumar N. Neurologic complications of bariatric surgery. Continuum (Minneap Minn) 2014; 20 (03) 580-597.
  • 66 Nations SP, Boyer PJ, Love LA. et al. Denture cream: An unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology 2008; 71: 639-643.
  • 67 Rowin J, Lewisaff SL. Copper deficiency myeloneuropathy and pancytopenia secondary to overuse of zinc supplementation. J Neurol Neurosurg Psychiatry 2005; 76: 750-751.
  • 68 Lampon N, Tutor JC. A preliminary investigation on the possible association between diminished copper availability and non-alcoholic fatty liver disease in epileptic patients treated with valproic acid. Upsala Journal of Medical Sciences 2011; 116 (02) 148-154.
  • 69 Prohaska JR. Impact of copper defiency in humans. Ann NY Acad Sci 2014; 1314: 1-5.
  • 70 Wazir SM, Ghobrial I. Copper deficiency, a new triad: anemia, leucopenia, and myeloneuropathy. J Community Hosp Intern Med Perspect 2017; 07 (04) 265-268.
  • 71 Mingyi C, Krishnamurthy A, Mohamed AR. et al. Hematological Disorders following Gastric Bypass Surgery: Emerging Concepts of the Interplay between Nutritional Deficiency and Inflammation. BioMed Res Int. 2013 Article ID 205467..
  • 72 Pizarro F, Olivares M, Uauy R. et al. Acute gastrointestinal effects of graded levels of copper in drinking water. Environmental Health Perspectives 1999; 107 (02) 117-121.
  • 73 Franchitto N, Gandia-Mailly P, Georges B. et al. Acute copper sulphate poisoning: a case report and literature review. Resuscitation 2008; 78: 92-96.
  • 74 Ludewig R, Lohs KH. Akute Vergiftungen. Ratgeber für toxikologische Notfälle. Jena: VEB Gustav Fischer Verlag; 1966
  • 75 Egger G. Die Akute Entzündung: Grundlagen, Pathophysiologie und klinische Erscheinungsbilder der unspezifischen Immunität. Wien: Springer; 2005
  • 76 Hellmann NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr 2002; 22: 439-458.
  • 77 Saenko EL, Yaropolov AI, Harris ED. The biological functions of ceruloplasmin expressed through copperbinding sites and a cellular receptor. J Trace Elem Exp Med 1994; 07: 69-88.
  • 78 Kono S. Aceruloplasminemia: an update. Int Rev Neurobiol 2013; 110: 125-151.
  • 79 Bandmann O, Weiss KH, Kaler SG. Wilson`s disease and other neurological copper disorders. Lancet Neurol 2015; 14: 103-113.
  • 80 Ogimoto M, Anzai K, Takenoshita H. et al. Criteria for early identification of aceruloplasminemia. Intern Med 2011; 50 (13) 1415-18.
  • 81 McNeill A, Pandolfo M, Kuhn J. et al. The neurological presentation of ceruloplasmin gene mutations. Eur Neurol 2008; 60 (04) 200-205.
  • 82 Chiplunkar S, Bindu PS, Nagappa M. et al. Huppke-Brendel syndrome in a seven month old boy with a novel 2-bp deletion in SLC33A1. Metabolic Brain Disease 2016; 31 (05) 1195-98.
  • 83 Huppke P, Brendel C, Kalscheuer V. et al. Mutations in SLC33A1 cause a lethal autosomal-re-cessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin. Am J Hum Genet 2012; 90 (01) 61-68.
  • 84 Caspary U, Leuschner S, Zeuzem S. Therapie von Leberund Gallekrankheiten. Berlin: Springer; 2001
  • 85 Fryer AA, Jones P, Strange R. et al. Plasma protein levels in normal human fetuses: 13 to 41 weeks-`gestation. Br J Obstet Gynaecol 1993; 100: 850-855.
  • 86 Manns MP, Schneidewind S. Praxis der Hepatologie. Berlin Heidelberg: Springer; 2016
  • 87 Speer CP, Gahr M. Pädiatrie. Heidelberg: Springer; 2013
  • 88 Wiener CM, Fauci AS, Braunwald E. et al. Harrison`s Principles of Internal Medicine. McGrawHill Education – Europe. 19th edition. 2017
  • 89 Kunz JB, Kulozik AE. Differentialdiagnose der kindlichen Anämie. Monatsschrift Kinderheilkunde 2012; 160 (04) 395-406.
  • 90 Daroff R, Jankovic J, Mazziotta J, Pomeroy S. Bradley’s Neurology in Clinical Practice. Amsterdam: Elsevier; 2015
  • 91 Hufschmidt A, Lücking CH, Rauer S, Glocker FX. (Hrsg) Neurologie compact. Stuttgart: Thieme; 2017
  • 92 Roberts EA, Socha P. Wilson disease in children. In: Morbus Wilson, Czlonkowska A, Schilsky ML. (Volume Editor) In: Handbook of clinical neurology. Aminoff MJ, Boller F, Swaab DF. (Series Editor), 142 3rd Series Elsevier; 2017: 141-156.
  • 93 Kayser B. Über einen Fall von angeborener Grünlichverfärbung der Cornea. Klin Mbl Augenheilk 1902; 40: 22-25.
  • 94 Wilson SAK. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 1912; 34: 295-507.
  • 95 Walshe JM. History of Wilson disease: a personal account. In: Morbus Wilson, Czlonkowska A, Schilsky ML. (eds.) In: Handbook of clinical neurology. Aminoff MJ, Boller F, Swaab DF (), 142 3rd Series. Amsterdam: Elsevier; 2017: 1-7.
  • 96 Cocos R, Sendroiu A, Schipor S. et al. Genotypephenotype correlations in a mountain population community with high prevalence of Wilson`s disease: genetic an clinical homogeneity. PLoS One 2014; 09: e98520.
  • 97 Merle U, Schaefer M, Ferenci P. et al. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut 2007; 56 (01) 115-120.
  • 98 Steindl P, Ferenci P, Dieners HP. et al. Wilson`s disease in patients presenting with liver disease: a diagnostic challenge. Gastroenterology 1997; 113: 212-218.
  • 99 Sanchez-Albisua I, Garde T, Hierro L. et al. A high index of suspicion: the key to an early diagnosis of Wilson`s disease in childhood. J Pediatr Gastroenterol Nutr 1999; 28: 186-190.
  • 100 Folhoffer A, Ferenci P, Csak T. et al. Novel mutations of the ATP7B gene among 109 Hungarian patients with Wilson`s disease. Eur J Gastroenterol Hepatol 2007; 19 (02) 105-11.
  • 101 Fleming CR, Dickson ER, Hellenhorst ER. et al. Pigmented corneal rings in a patient with biliary cirrhosis. Gastroenterology 1975; 69: 220-225.
  • 102 Tauber J, Steinert RF. Pseudo-Kayser-Fleischer ring of the cornea associated with non-Wilsonianliver disease. A case report and literature review. Cornea 1993; 12: 74-77.
  • 103 Dunn LL, Annable WL, Kliegman RM. Pigmented corneal rings in neonates with liver disease. J Pediatr 1987; 110: 771-776.
  • 104 Mongalgi MA, Toumi NH, Cheour M. et al. Galactosialidosis with Kayser-Fleischer`s ring. Arch Fr Pediatr 1992; 49: 193-195.
  • 105 Finelli PF. Kayser-Fleischer ring: hepatolenticular degeneration (Wilson’s disease). Neurology 1995; 45 (07) 1261-62.
  • 106 Caim JE, Parry WH, Walshe JM. “Sunflower cataract” in Wilson`s disease. British Med Journal 1969; 03: 95-96.
  • 107 Caim JE, Parry WH, Walshe JM. The Kayser Fleisher ring. Trans Ophthalol Soc 1970; 90: 187-190.
  • 108 Lößner A, Lößner J, Bachmann H. et al. The Kayser – Fleischer ring during long-term treatment in Wilson`s disease (hepatolentikular degeneration). A follow up study. Graefe`s Arch Clin Exp Ophthalmol 1986; 224: 152-155.
  • 109 Stamelou M, Tuschl K, Chong WK. et al. Dystonia with Brain manganese accumulation resulting from SLC30A10 mutations: a new treatable disorder. Mov Disord 2012; 27 (10) 1317-22.
  • 110 Quadri M, Federico A, Zhao T. et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet 2012; 90 (03) 467-477.
  • 111 Tuschl K, Clayton PT, Gospe Jr SM. et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet 2012; 90 (03) 457-466.
  • 112 Di Toro Mammarella L, Mignarri A, Battisti C. et al. Two-year follow-up after chelating therapy in a patient with adult-onset parkinsonism and hypermanganesaemia due to SLC30A10 mutations. J Neurol 2014; 261 (01) 227-228.